메뉴 건너뛰기




Volumn 9, Issue 2, 2010, Pages 181-187

Kernel methods and neural networks for water resources management

Author keywords

Artificial neural networks; Environmental modeling; Support vector machines; Water resources management

Indexed keywords


EID: 77958575690     PISSN: 15829596     EISSN: None     Source Type: Journal    
DOI: 10.30638/eemj.2010.027     Document Type: Conference Paper
Times cited : (6)

References (25)
  • 1
    • 77958537856 scopus 로고    scopus 로고
    • Predicting stream water quality using artificial neural networks
    • Bowers J.A., Shedrow C.B., (2000), Predicting stream water quality using artificial neural networks, Environmental Modelling & Software, 22, 1066-1072.
    • (2000) Environmental Modelling & Software , vol.22 , pp. 1066-1072
    • Bowers, J.A.1    Shedrow, C.B.2
  • 6
    • 21644434168 scopus 로고    scopus 로고
    • Use of support vector machines and neural network in diagnosis of neuromuscular disorders
    • Guler N. F., Kocer S., (2005), Use of support vector machines and neural network in diagnosis of neuromuscular disorders, Journal of Medical Systems, 29, 271-284.
    • (2005) Journal of Medical Systems , vol.29 , pp. 271-284
    • Guler, N.F.1    Kocer, S.2
  • 7
    • 3342965223 scopus 로고    scopus 로고
    • Prediction of wastewater treatment plant performance using artificial neural networks
    • Hamed M. M., Khalafallah M. G., Hassanien E. A., (2004), Prediction of wastewater treatment plant performance using artificial neural networks, Environmental Modelling and Software, 19, 919-928.
    • (2004) Environmental Modelling and Software , vol.19 , pp. 919-928
    • Hamed, M.M.1    Khalafallah, M.G.2    Hassanien, E.A.3
  • 9
    • 38049043463 scopus 로고    scopus 로고
    • Software project risk management modeling with neural network and support vector machine approaches
    • Hu J., Huang J., Chen J., Liu M., Xie K., (2007), Software project risk management modeling with neural network and support vector machine approaches, Natural Computation, 3, 358-362.
    • (2007) Natural Computation , vol.3 , pp. 358-362
    • Hu, J.1    Huang, J.2    Chen, J.3    Liu, M.4    Xie, K.5
  • 13
    • 33751507176 scopus 로고    scopus 로고
    • A mixture of support vector machines for time series forecasting
    • Lijuan C., Zhang J., (2006), A Mixture of Support Vector Machines for Time Series Forecasting, Neural Network World, On line at: http://www. encyclopedia. com/doc/1P3-1302422001.html
    • (2006) Neural Network World
    • Lijuan, C.1    Zhang, J.2
  • 14
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction, (in French)
    • Lin J. Y., Cheng C.T., Chau K. W., (2006), Using support vector machines for long-term discharge prediction, (in French), Hydrological Sciences Journal, 51, 599-612.
    • (2006) Hydrological Sciences Journal , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 15
    • 0005946796 scopus 로고    scopus 로고
    • Control of water levels in polder areas using neural networks and fuzzy adaptive systems
    • Savic D., Walters GA. (Eds.), Research Studies Press, Baldock, UK
    • Lobbrecht A.H., Solomatine D.P., (1999), Control of water levels in polder areas using neural networks and fuzzy adaptive systems. In: Water Industry Systems: Modelling and Optimization Applications, Savic D., Walters GA. (Eds.), vol. 1, Research Studies Press, Baldock, UK., 509-518.
    • (1999) Water Industry Systems: Modelling and Optimization Applications , vol.1 , pp. 509-518
    • Lobbrecht, A.H.1    Solomatine, D.P.2
  • 16
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier H. R., Dandy G.C, (2000), Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environmental Modelling and Software, 15, 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 17
    • 77958465044 scopus 로고    scopus 로고
    • A computer system using two membership functions and T-Norms for the calculation of mountainous watersheds torrential risk: The case of lakes Trixonida and Lisimaxia
    • Springer, Netherlands
    • Maris F., Iliadis L., (2007), A computer system using two membership functions and T-Norms for the calculation of mountainous watersheds torrential risk: The case of lakes Trixonida and Lisimaxia. In: Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability, vol. 103, Springer, Netherlands, 247-254.
    • (2007) Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability , vol.103 , pp. 247-254
    • Maris, F.1    Iliadis, L.2
  • 19
  • 21
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai P. F., Lin C. S., (2005), A hybrid ARIMA and support vector machines model in stock price forecasting, Omega, 33, 497-505.
    • (2005) Omega , vol.33 , pp. 497-505
    • Pai, P.F.1    Lin, C.S.2
  • 22
    • 48749090493 scopus 로고    scopus 로고
    • Greedy regression ensemble selection: Theory and an application to water quality prediction
    • Partalas I, Tsoumakas G., Hatzikos E.V., Vlahavas I., (2008), Greedy regression ensemble selection: Theory and an application to water quality prediction, Information Sciences, 178, 3867-3879.
    • (2008) Information Sciences , vol.178 , pp. 3867-3879
    • Partalas, I.1    Tsoumakas, G.2    Hatzikos, E.V.3    Vlahavas, I.4
  • 24
    • 58149156321 scopus 로고    scopus 로고
    • Evaluation of erosion in equipped basins: Preliminary results of a comparison between the Gavrilovic model and direct measurements of sediment transport
    • Tazioli A., (2009), Evaluation of erosion in equipped basins: preliminary results of a comparison between the Gavrilovic model and direct measurements of sediment transport. Environmental Geology, 56, 825-831.
    • (2009) Environmental Geology , vol.56 , pp. 825-831
    • Tazioli, A.1
  • 25
    • 84887252594 scopus 로고    scopus 로고
    • Support Vector method for functuion approximation regression estimation and signal processing
    • Mozer M., Jordan M., Petsche T. (Eds.)
    • Vapnik V.N., Golowich S., Smola A., (1997), Support Vector method for functuion approximation regression estimation and signal processing. In: Advances in Neural Information Processing Systems, Mozer M., Jordan M., Petsche T. (Eds.), vol. 9, Cambridge, MA:MTT Press, 281-287.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.N.1    Golowich, S.2    Smola, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.