메뉴 건너뛰기




Volumn 6323 LNAI, Issue PART 3, 2010, Pages 213-228

Online structural graph clustering using frequent subgraph mining

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING APPROACH; COMMON SUBGRAPH; FREQUENT SUBGRAPH MINING; FREQUENT SUBGRAPHS; GRAPH CLUSTERING; GRAPH DATABASE; MOLECULAR GRAPHS; NOVEL METHODS; ONLINE MODES; PRACTICAL PROBLEMS; PROBLEM FORMULATION; REAL WORLD DATA; STRUCTURAL CLUSTERING; STRUCTURAL GRAPH; SUBGRAPHS; VERTEX CONNECTIVITY;

EID: 77958054819     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15939-8_14     Document Type: Conference Paper
Times cited : (22)

References (18)
  • 3
    • 33749248513 scopus 로고    scopus 로고
    • Clustering graphs by weighted substructure mining
    • Cohen, W.W., Moore, A. (eds.) ACM Press, New York
    • Tsuda, K., Kudo, T.: Clustering Graphs by Weighted Substructure Mining. In: Cohen, W.W., Moore, A. (eds.) ICML 2006, pp. 953-960. ACM Press, New York (2006)
    • (2006) ICML 2006 , pp. 953-960
    • Tsuda, K.1    Kudo, T.2
  • 4
    • 20444410051 scopus 로고    scopus 로고
    • Database clustering with a combination of fingerprint and maximum common substructure methods
    • Stahl, M., Mauser, H.: Database clustering with a combination of fingerprint and maximum common substructure methods. J. Chem. Inf. Model. 45, 542-548 (2005)
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 542-548
    • Stahl, M.1    Mauser, H.2
  • 6
    • 0037068532 scopus 로고    scopus 로고
    • Do structurally similar molecules have similar biological activity?
    • Martin, Y.C., Kofron, J.L., Traphagen, L.M.: Do structurally similar molecules have similar biological activity? J. Med. Chem. 45, 4350-4358 (2002)
    • (2002) J. Med. Chem. , vol.45 , pp. 4350-4358
    • Martin, Y.C.1    Kofron, J.L.2    Traphagen, L.M.3
  • 7
    • 0026498426 scopus 로고
    • Neural computing in cancer drug development: Predicting mechanism of action
    • Weinstein, J., Kohn, K., Grever, M., Viswanadhan, V.: Neural computing in cancer drug development: Predicting mechanism of action. Science 258, 447-451 (1992)
    • (1992) Science , vol.258 , pp. 447-451
    • Weinstein, J.1    Kohn, K.2    Grever, M.3    Viswanadhan, V.4
  • 9
    • 0036022963 scopus 로고    scopus 로고
    • Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases
    • Raymond, J.W., Willett, P.: Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. J. Comput. Aided. Mol. Des. 16(1), 59-71 (2002)
    • (2002) J. Comput. Aided. Mol. Des. , vol.16 , Issue.1 , pp. 59-71
    • Raymond, J.W.1    Willett, P.2
  • 10
    • 0000892020 scopus 로고    scopus 로고
    • Clustering of large databases of compounds: Using the MDL "keys" as structural descriptors
    • McGregor, M.J., Pallai, P.V.: Clustering of large databases of compounds: Using the MDL "keys" as structural descriptors. J. Chem. Inform. Comput. Sci. 37(3), 443-448 (1997)
    • (1997) J. Chem. Inform. Comput. Sci. , vol.37 , Issue.3 , pp. 443-448
    • McGregor, M.J.1    Pallai, P.V.2
  • 11
    • 33745126250 scopus 로고    scopus 로고
    • Graph clustering based on structural similarity offragments
    • Jantke, K.P., et al. (eds.) Springer, Heidelberg
    • Yoshida, T., Shoda, R., Motoda, H.: Graph clustering based on structural similarity offragments. In: Jantke, K.P., et al. (eds.) Federation over the Web. LNCS (LNAI), vol. 3847, pp. 97-114. Springer, Heidelberg (2006)
    • (2006) Federation over the Web. LNCS (LNAI) , vol.3847 , pp. 97-114
    • Yoshida, T.1    Shoda, R.2    Motoda, H.3
  • 12
    • 0037406313 scopus 로고    scopus 로고
    • Validation indices for graph clustering
    • Günter, S., Bunke, H.: Validation indices for graph clustering. Pattern Recogn. Lett. 24(8), 1107-1113 (2003)
    • (2003) Pattern Recogn. Lett. , vol.24 , Issue.8 , pp. 1107-1113
    • Günter, S.1    Bunke, H.2
  • 14
    • 33745010204 scopus 로고    scopus 로고
    • An overlapping cluster algorithm to provide non-exhaustive clustering
    • Chen, Y.L., Hu, H.L.: An overlapping cluster algorithm to provide non-exhaustive clustering. Eur. J. Oper. Res. 173(3), 762-780 (2006)
    • (2006) Eur. J. Oper. Res. , vol.173 , Issue.3 , pp. 762-780
    • Chen, Y.L.1    Hu, H.L.2
  • 15
    • 0037348826 scopus 로고    scopus 로고
    • Comparison of chemical clustering methods using graph-and fingerprint-based similarity measures
    • Raymond, J.W., Blankley, C.J., Willett, P.: Comparison of chemical clustering methods using graph-and fingerprint-based similarity measures. J. Mol. Graph. Model. 21(5), 421-433 (2003)
    • (2003) J. Mol. Graph. Model. , vol.21 , Issue.5 , pp. 421-433
    • Raymond, J.W.1    Blankley, C.J.2    Willett, P.3
  • 16
    • 84951803526 scopus 로고    scopus 로고
    • A comparison of algorithms for maximum common subgraph on randomly connected graphs
    • Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) Springer, Heidelberg
    • Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of algorithms for maximum common subgraph on randomly connected graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 123-132. Springer, Heidelberg (2002)
    • (2002) SPR 2002 and SSPR 2002. LNCS , vol.2396 , pp. 123-132
    • Bunke, H.1    Foggia, P.2    Guidobaldi, C.3    Sansone, C.4    Vento, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.