-
1
-
-
84867186048
-
Variational inference for Dirichlet process mixtures
-
D.M. Blei and M.I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121-144, 2005.
-
(2005)
Bayesian Analysis
, vol.1
, Issue.1
, pp. 121-144
-
-
Blei, D.M.1
Jordan, M.I.2
-
2
-
-
33750340279
-
Don't be afraid of simpler patterns
-
B. Bringmann, A. Zimmermann, L. D. Raedt, and S. Nijssen. Don't be afraid of simpler patterns. In 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), pages 55-66, 2006.
-
(2006)
10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)
, pp. 55-66
-
-
Bringmann, B.1
Zimmermann, A.2
Raedt, L.D.3
Nijssen, S.4
-
4
-
-
4043167653
-
Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
-
C. Helma, T. Cramer, S. Kramer, and L.D. Raedt. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J. Chem. Inf. Comput. Sci., 44:1402-1411, 2004.
-
(2004)
J. Chem. Inf. Comput. Sci
, vol.44
, pp. 1402-1411
-
-
Helma, C.1
Cramer, T.2
Kramer, S.3
Raedt, L.D.4
-
5
-
-
1942516986
-
Marginalized kernels between labeled graphs
-
T. Faucett and N. Mishra, editors, Menlo Park, CA, AAAI Press
-
H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In T. Faucett and N. Mishra, editors, Proceedings of the 20th International Conference on Machine Learning, pages 321-328, Menlo Park, CA, AAAI Press, 2003.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, pp. 321-328
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
6
-
-
33646238004
-
-
J. Kazius, S. Nijssen, J. Kok, and T. Back A.P. Ijzerman. Substructure mining using elaborate chemical representation. J. Chem. Inf. Model, 46:597-605, 2006.
-
J. Kazius, S. Nijssen, J. Kok, and T. Back A.P. Ijzerman. Substructure mining using elaborate chemical representation. J. Chem. Inf. Model, 46:597-605, 2006.
-
-
-
-
7
-
-
33845734547
-
Variable selection in clustering via Dirichlet mixture models
-
S. Kim, M.G. Tadesse, and M. Vannucci. Variable selection in clustering via Dirichlet mixture models. Biometrika, 93(4):877-893, 2006.
-
(2006)
Biometrika
, vol.93
, Issue.4
, pp. 877-893
-
-
Kim, S.1
Tadesse, M.G.2
Vannucci, M.3
-
8
-
-
84864052254
-
Accelerated variational Dirichlet process mixtures
-
K. Kurihara, M. Welling, and N. Vlassis. Accelerated variational Dirichlet process mixtures. In NIPS 19, 2007.
-
(2007)
NIPS 19
-
-
Kurihara, K.1
Welling, M.2
Vlassis, N.3
-
9
-
-
0020752197
-
A distance measure between attributed relational graphs for pattern recognition
-
A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern., 13:353-362, 1983.
-
(1983)
IEEE Trans. Syst. Man Cybern
, vol.13
, pp. 353-362
-
-
Sanfeliu, A.1
Fu, K.S.2
-
11
-
-
0000720609
-
A constructive definition of Dirichlet priors
-
J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650, 1994.
-
(1994)
Statistica Sinica
, vol.4
, pp. 639-650
-
-
Sethuraman, J.1
-
13
-
-
4544354704
-
Variational Bayesian feature selection for Gaussian mixture models
-
F. Valente and C. Wellekens. Variational Bayesian feature selection for Gaussian mixture models. In ICASSP'04, volume 1, pages 513-516, 2004.
-
(2004)
ICASSP'04
, vol.1
, pp. 513-516
-
-
Valente, F.1
Wellekens, C.2
-
14
-
-
12244307653
-
State of the art of graphbased data mining
-
T. Washio and H. Motoda. State of the art of graphbased data mining. SIGKDD Explorations, 5(1):59-68, 2003.
-
(2003)
SIGKDD Explorations
, vol.5
, Issue.1
, pp. 59-68
-
-
Washio, T.1
Motoda, H.2
-
15
-
-
78149333073
-
-
X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM), pages 721-724. IEEE Computer Society, 2002.
-
X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM), pages 721-724. IEEE Computer Society, 2002.
-
-
-
-
16
-
-
52649168960
-
-
X. Yan and J. Han. gSpan: graph-based substructure pattern mining. Technical report, Department of Computer Science, University of Illinois at Urbana-Champaign, 2002.
-
X. Yan and J. Han. gSpan: graph-based substructure pattern mining. Technical report, Department of Computer Science, University of Illinois at Urbana-Champaign, 2002.
-
-
-
-
17
-
-
52649091754
-
-
Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments and analysis. Technical Report #01-40, Department of Computer Science, University of Minnesota, 2001.
-
Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments and analysis. Technical Report #01-40, Department of Computer Science, University of Minnesota, 2001.
-
-
-
|