메뉴 건너뛰기




Volumn , Issue , 2010, Pages 394-397

Comparison of discrete- and continuous-state stochastic methods to model neuronal signal transduction

Author keywords

Chemical langevin equation; Gillespie stochastic simulation algorithm; Signal transduction; Stochastic differential equation

Indexed keywords

BIOCHEMICAL REACTIONS; CHEMICAL LANGEVIN EQUATION; CHEMICAL SPECIES; COMPUTATION TIME; COMPUTING SOLUTIONS; HYBRID DETERMINISTIC; REACTION METHOD; SIGNAL TRANSDUCTION NETWORKS; STOCHASTIC DIFFERENTIAL EQUATION MODELS; STOCHASTIC DIFFERENTIAL EQUATIONS; STOCHASTIC METHODS; STOCHASTIC SIMULATION ALGORITHMS; TEST CASE;

EID: 77958042740     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1854776.1854838     Document Type: Conference Paper
Times cited : (1)

References (13)
  • 1
    • 0033555859 scopus 로고    scopus 로고
    • Emergent properties of networks of biological signaling pathways
    • U. S. Bhalla and R. Iyengar. Emergent properties of networks of biological signaling pathways. Science, 283:381-387, 1999.
    • (1999) Science , vol.283 , pp. 381-387
    • Bhalla, U.S.1    Iyengar, R.2
  • 2
    • 0036906215 scopus 로고    scopus 로고
    • Complexity of calcium signaling in synaptic spines
    • K. M. Franks and T. J. Sejnowski. Complexity of calcium signaling in synaptic spines. BioEssays, 24:1130-1144, 2002.
    • (2002) BioEssays , vol.24 , pp. 1130-1144
    • Franks, K.M.1    Sejnowski, T.J.2
  • 3
    • 0017030517 scopus 로고
    • A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
    • D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22:403-434, 1976.
    • (1976) J. Comput. Phys. , vol.22 , pp. 403-434
    • Gillespie, D.T.1
  • 4
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81:2340-2361, 1977.
    • (1977) J. Phys. Chem. , vol.81 , pp. 2340-2361
    • Gillespie, D.T.1
  • 5
    • 0034225547 scopus 로고    scopus 로고
    • The chemical Langevin equation
    • D. T. Gillespie. The chemical Langevin equation. J. Chem. Phys., 113:297-306, 2000.
    • (2000) J. Chem. Phys. , vol.113 , pp. 297-306
    • Gillespie, D.T.1
  • 6
    • 34249950625 scopus 로고    scopus 로고
    • Stochastic simulation of chemical kinetics
    • D. T. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem., 58:35-55, 2007.
    • (2007) Annu. Rev. Phys. Chem. , vol.58 , pp. 35-55
    • Gillespie, D.T.1
  • 7
    • 67349145400 scopus 로고    scopus 로고
    • Hybrid stochastic simulations of intracellular reaction-diffusion systems
    • G. Kalantzis. Hybrid stochastic simulations of intracellular reaction-diffusion systems. Comput. Biol. Chem., 33:205-215, 2009.
    • (2009) Comput. Biol. Chem. , vol.33 , pp. 205-215
    • Kalantzis, G.1
  • 8
    • 33746373126 scopus 로고    scopus 로고
    • Developing Itô stochastic differential equation models for neuronal signal transduction pathways
    • T. Manninen, M.-L. Linne, and K. Ruohonen. Developing Itô stochastic differential equation models for neuronal signal transduction pathways. Comput. Biol. Chem., 30:280-291, 2006.
    • (2006) Comput. Biol. Chem. , vol.30 , pp. 280-291
    • Manninen, T.1    Linne, M.-L.2    Ruohonen, K.3
  • 9
    • 47149107683 scopus 로고    scopus 로고
    • Modeling neuronal signal transduction using Itô stochastic differential equations and the Gillespie stochastic simulation algorithm
    • Dallas, Texas, USA
    • T. Manninen, M.-L. Linne, and K. Ruohonen. Modeling neuronal signal transduction using Itô stochastic differential equations and the Gillespie stochastic simulation algorithm. In Proc. of CASB, volume 540, pages 89-94, Dallas, Texas, USA, 2006.
    • (2006) Proc. of CASB , vol.540 , pp. 89-94
    • Manninen, T.1    Linne, M.-L.2    Ruohonen, K.3
  • 10
    • 0037433037 scopus 로고    scopus 로고
    • The Database of Quantitative Cellular Signaling: Management and analysis of chemical kinetic models of signaling networks
    • S. Sivakumaran, S. Hariharaputran, J. Mishra, and U. S. Bhalla. The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks. Bioinformatics, 19:408-415, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 408-415
    • Sivakumaran, S.1    Hariharaputran, S.2    Mishra, J.3    Bhalla, U.S.4
  • 11
    • 85057660342 scopus 로고    scopus 로고
    • Monte Carlo methods for simulating realistic synaptic microphysiology using MCell
    • E. De Schutter, editor, CRC Press, Boca Raton
    • J. R. Stiles and T. M. Bartol. Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In E. De Schutter, editor, Computational Neuroscience: Realistic Modeling for Experimentalists, pages 87-127. CRC Press, Boca Raton, 2001.
    • (2001) Computational Neuroscience: Realistic Modeling for Experimentalists , pp. 87-127
    • Stiles, J.R.1    Bartol, T.M.2
  • 12
    • 3142577523 scopus 로고    scopus 로고
    • Stochastic approaches for modelling in vivo reactions
    • T. E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in vivo reactions. Comput. Biol. Chem., 28:165-178, 2004.
    • (2004) Comput. Biol. Chem. , vol.28 , pp. 165-178
    • Turner, T.E.1    Schnell, S.2    Burrage, K.3
  • 13
    • 85062196897 scopus 로고    scopus 로고
    • STEPS: Modeling and simulating complex reaction-diffusion systems with Python
    • S. Wils and E. De Schutter. STEPS: Modeling and simulating complex reaction-diffusion systems with Python. Front. Neuroinform., 3:15, 200
    • Front. Neuroinform. , vol.3 , Issue.15 , pp. 200
    • Wils, S.1    De Schutter, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.