메뉴 건너뛰기




Volumn 21, Issue 3, 2010, Pages 427-471

A clustering comparison measure using density profiles and its application to the discovery of alternate clusterings

Author keywords

Alternate clustering algorithms; Alternate clusterings; Cluster analysis; Clustering; Clustering comparison; Clustering similarity

Indexed keywords

ALTERNATE CLUSTERING ALGORITHMS; CLUSTERING; CLUSTERING COMPARISON; CLUSTERING SIMILARITY; CLUSTERINGS;

EID: 77958029398     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-009-0164-z     Document Type: Article
Times cited : (33)

References (50)
  • 3
    • 84936937316 scopus 로고    scopus 로고
    • Analysis and improvements of the adaptive discretization intervals knowledge representation
    • Bacardit J,Garrell JM (2004) Analysis and improvements of the adaptive discretization intervals knowledge representation. In: GECCO, vol 2, pp 726-738
    • (2004) GECCO , vol.2 , pp. 726-738
    • Bacardit, J.1    Garrell, J.M.2
  • 4
    • 84873117260 scopus 로고    scopus 로고
    • Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity
    • Bae E, Bailey J (2006) Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In: International conference on data mining, pp 53-62
    • (2006) International Conference on Data Mining , pp. 53-62
    • Bae, E.1    Bailey, J.2
  • 9
    • 84880095768 scopus 로고    scopus 로고
    • Clustering with constraints: Feasibility issues and the k-means algorithm
    • Davidson I (2005a) Clustering with constraints: Feasibility issues and the k-means algorithm. In: SIAM international conference on data mining
    • (2005) SIAM International Conference on Data Mining
    • Davidson, I.1
  • 10
    • 33646435064 scopus 로고    scopus 로고
    • Agglomerative hierarchical clusteringwith constraints: Theoretical and empirical results
    • Davidson I (2005b) Agglomerative hierarchical clusteringwith constraints: Theoretical and empirical results. In: Pacific Asia conference on knowledge discovery, pp 59-70
    • (2005) Pacific Asia Conference on Knowledge Discovery , pp. 59-70
    • Davidson, I.1
  • 12
    • 0015644825 scopus 로고
    • A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters
    • Dunn J (1974) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3:32-57
    • (1974) J Cybern , vol.3 , pp. 32-57
    • Dunn, J.1
  • 13
    • 0041078536 scopus 로고
    • A direct method for multidimensional ratio scaling
    • Ekman G (1963) A direct method for multidimensional ratio scaling. Psychometrika 28(1):33-41
    • (1963) Psychometrika , vol.28 , Issue.1 , pp. 33-41
    • Ekman, G.1
  • 14
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms: A position paper
    • Estivill-Castro V (2002) Why so many clustering algorithms: A position paper. SIGKDD Explor Newsl 4(1):65-75
    • (2002) SIGKDD Explor Newsl , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 15
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • Fayyad UM, Irani KB (1992) On the handling of continuous-valued attributes in decision tree generation. Mach Learn 8:87-102
    • (1992) Mach Learn , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 17
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • Fred ALN, Jain AK (2005) Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 27(6):835-850
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.6 , pp. 835-850
    • Fred, A.L.N.1    Jain, A.K.2
  • 21
    • 33747044600 scopus 로고
    • Metric and dissimilarity properties of dissimilarity coefficients
    • Gower JC, Legendre P (1986) Metric and dissimilarity properties of dissimilarity coefficients. J Classif 3:5-48
    • (1986) J Classif , vol.3 , pp. 5-48
    • Gower, J.C.1    Legendre, P.2
  • 24
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193-218
    • (1985) J Classif , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 27
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2:83-97
    • (1955) Naval Res Logist Q , vol.2 , pp. 83-97
    • Kuhn, H.W.1
  • 29
    • 1542299386 scopus 로고    scopus 로고
    • Technical Report, Department of Statistics, University of Washington
    • Meila M (2002) Comparing clusterings. Technical Report, Department of Statistics, University of Washington
    • (2002) Comparing Clusterings
    • Meila, M.1
  • 30
    • 77958023407 scopus 로고    scopus 로고
    • Comparing clusterings-technical report
    • Meila M (2003) Comparing clusterings-technical report. http://citeseer.ist.psu.edu/meila02comparing. html
    • (2003)
    • Meila, M.1
  • 31
    • 31844440880 scopus 로고    scopus 로고
    • Comparing clusterings-an axiomatic view
    • MeilaM(2005) Comparing clusterings-an axiomatic view. In: International conference on machine learning Meil?a M (2005) Comparing clusterings: An axiomatic view. In: Proceedings of the 22nd international conference on Machine learning, pp 577-584
    • (2005) International Conference on Machine Learning , pp. 577-584
    • Meila, M.1
  • 32
    • 77958026381 scopus 로고    scopus 로고
    • Mixed Integer Linear Programming (MILP) Solver
    • Mixed Integer Linear Programming (MILP) Solver (2007). http://lpsolve.sourceforge.net
    • (2007)
  • 34
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W (1971a) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66: 846-850
    • (1971) J Am Stat Assoc , vol.66 , pp. 846-850
    • Rand, W.1
  • 35
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clusteringmethods
    • RandWM (1971b) Objective criteria for the evaluation of clusteringmethods. JAmStat Assoc 66:622-626
    • (1971) JAmStat Assoc , vol.66 , pp. 622-626
    • Rand, W.M.1
  • 37
    • 77958036111 scopus 로고    scopus 로고
    • Repository U (2008) http://archive.ics.uci.edu/ml
    • (2008)
    • Repository, U.1
  • 38
    • 84948970450 scopus 로고
    • Class-driven statistical discretization of continuous attributes (extended abstract)
    • Springer, London, UK
    • Richeldi M, Rossotto M (1995) Class-driven statistical discretization of continuous attributes (extended abstract). In: Proceedings of the 8th European conference on machine learning. Springer, London, UK, pp 335-338
    • (1995) Proceedings of the 8th European Conference on Machine Learning , pp. 335-338
    • Richeldi, M.1    Rossotto, M.2
  • 39
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J (2003) Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J Mach Learn 3:583-617
    • (2003) J Mach Learn , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 44
    • 30144442247 scopus 로고    scopus 로고
    • Clustering ensembles: Models of consensus and weak partitions
    • Topchy A, Jain AK (2005) Clustering ensembles: Models of consensus and weak partitions. IEEE Trans Pattern Anal Mach Intell 27(12):1866-1881
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.12 , pp. 1866-1881
    • Topchy, A.1    Jain, A.K.2
  • 48
    • 1842641692 scopus 로고
    • Comment
    • Wallace DL (1983) Comment. J Am Stat Assoc 78(383):569-576
    • (1983) J Am Stat Assoc , vol.78 , Issue.383 , pp. 569-576
    • Wallace, D.L.1
  • 49
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for naive-bayes learning: Managing discretization bias and variance
    • Yang Y,Webb GI (2009) Discretization for naive-bayes learning: Managing discretization bias and variance. Mach Learn 74(1):39-74
    • (2009) Mach Learn , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.