메뉴 건너뛰기




Volumn 1484, Issue , 1998, Pages 160-169

Dynamic discretization of continuous attributes

Author keywords

Continuous attributes; Discretization; Feature selection

Indexed keywords

BAYESIAN NETWORKS; DECISION TREES; FEATURE EXTRACTION; MACHINE LEARNING;

EID: 79955570588     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-49795-1_14     Document Type: Conference Paper
Times cited : (23)

References (12)
  • 2
    • 0002823280 scopus 로고
    • On changing continuous attributes into ordered discrete attributes
    • I Y. Kodratoff, editor, LNAI 482 Springer Verlag, 162
    • J. Catlett. On changing continuous attributes into ordered discrete attributes. I Y. Kodratoff, editor, European Working Session on Learning -EWSL91. LNAI 482 Springer Verlag, 1991. 162
    • (1991) European Working Session on Learning -EWSL91
    • Catlett, J.1
  • 3
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple bayesianclassifier
    • In L. Saitta, editor, Morgan Kaufmann, 160, 161
    • P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimality of the simple bayesian classifier. In L. Saitta, editor, Machine Learning Proc. of 13th International Conference. Morgan Kaufmann, 1996. 160, 161
    • (1996) Machine Learning Proc. Of 13Th International Conference
    • Domingos, P.1    Pazzani, M.2
  • 4
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • In A. Prieditis and S. Russel, editors, Morgan Kaufmann, 161, 163
    • J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. In A. Prieditis and S. Russel, editors, Machine Learning Proc. of 12th International Conference. Morgan Kaufmann, 1995. 161, 163
    • (1995) Machine Learning Proc. Of 12Th International Conference
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 6
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • 162
    • R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, Vol, 11, 1993. 162
    • (1993) Machine Learning , vol.11
    • Holte, R.C.1
  • 7
    • 85119615481 scopus 로고    scopus 로고
    • Error-based and entropy-based discretization of continuous features
    • 160
    • R. Kohavi and M. Sahami. Error-based and entropy-based discretization of continuous features. In Proceedings of KDD 96, 1996. 160
    • (1996) Proceedings of KDD , vol.96
    • Kohavi, R.1    Sahami, M.2
  • 10
    • 84948968233 scopus 로고
    • Class driven statistical discretization of continuous attributes
    • In S. Wrobel and N. Lavrac, editors, Springer Verlag, 162
    • M. Richeldi and M. Rossoto. Class driven statistical discretization of continuous attributes. In S. Wrobel and N. Lavrac, editors, Machine Learning: ECML-95. LNAI 912, Springer Verlag, 1995. 162
    • (1995) Machine Learning: ECML-95. LNAI 912
    • Richeldi, M.1    Rossoto, M.2
  • 12
    • 0005847396 scopus 로고    scopus 로고
    • Search-based class discretization
    • LNAI 1224, Springer Verlag, 161
    • L. Torgo and J. Gama. Search-based class discretization. In Proceedings ECML-97. LNAI 1224, Springer Verlag, 1997. 161
    • (1997) Proceedings ECML-97
    • Torgo, L.1    Gama, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.