메뉴 건너뛰기




Volumn 11, Issue 1, 2011, Pages 1087-1097

A generic optimising feature extraction method using multiobjective genetic programming

Author keywords

Feature extraction; Genetic programming; Multiobjective optimisation; Pattern recognition

Indexed keywords

CLASS SEPARABILITY; CONVENTIONAL CLASSIFIER; DECISION SPACE; FEATURE EXTRACTION METHODS; FEATURE EXTRACTOR; INPUT PATTERNS; MACHINE-LEARNING; MULTIOBJECTIVE GENETIC PROGRAMMING; MULTIOBJECTIVE OPTIMISATION; REAL-WORLD DATASETS; STATLOG;

EID: 77957916556     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.02.008     Document Type: Article
Times cited : (29)

References (45)
  • 3
    • 70350225878 scopus 로고    scopus 로고
    • An introduction to feature extraction
    • I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.) Physica-Verlag, Springer
    • I. Guyon, A. Elisseeff, An introduction to feature extraction, in: I. Guyon, S. Gunn, M. Nikravesh, L. Zadeh (Eds.), Feature Extraction, Foundations and Applications, Physica-Verlag, Springer, 2006.
    • (2006) Feature Extraction, Foundations and Applications
    • Guyon, I.1    Elisseeff, A.2
  • 4
  • 7
    • 77957889190 scopus 로고    scopus 로고
    • Feature extraction for the k-nearest neighbour classifier with genetic programming
    • Lake Como, Italy
    • M.J.C. Bot Feature extraction for the k-nearest neighbour classifier with genetic programming EuroGP 2001 Lake Como, Italy 2001 256 267
    • (2001) EuroGP 2001 , pp. 256-267
    • Bot, M.J.C.1
  • 11
    • 0041405574 scopus 로고    scopus 로고
    • The evolutionary preprocessor: Automatic feature extraction for supervised classification using genetic programming
    • Palo Alto, CA
    • J.R. Sherrah, R.E. Bogner, and A. Bouzerdoum The evolutionary preprocessor: automatic feature extraction for supervised classification using genetic programming 2nd Annual Conference on Genetic Programming Palo Alto, CA 1997 304 312
    • (1997) 2nd Annual Conference on Genetic Programming , pp. 304-312
    • Sherrah, J.R.1    Bogner, R.E.2    Bouzerdoum, A.3
  • 14
    • 27144450271 scopus 로고    scopus 로고
    • Genetic programming-based construction of features for machine learning and knowledge discovery tasks
    • K. Krawiec Genetic programming-based construction of features for machine learning and knowledge discovery tasks Genetic Programming and Evolvable Machines 3 2002 329 343
    • (2002) Genetic Programming and Evolvable Machines , vol.3 , pp. 329-343
    • Krawiec, K.1
  • 17
    • 27944437848 scopus 로고    scopus 로고
    • Genetic programming with a genetic algorithm for feature construction and selection
    • M.G. Smith, and L. Bull Genetic programming with a genetic algorithm for feature construction and selection Genetic Programming and Evolvable Machines 6 2005 265 281
    • (2005) Genetic Programming and Evolvable Machines , vol.6 , pp. 265-281
    • Smith, M.G.1    Bull, L.2
  • 18
    • 3543074493 scopus 로고    scopus 로고
    • Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming
    • A. Ekárt, and S.Z. Németh Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming Genetic Programming and Evolvable Machines 2 2001 61 73
    • (2001) Genetic Programming and Evolvable Machines , vol.2 , pp. 61-73
    • Ekárt, A.1    Németh, S.Z.2
  • 19
    • 0000626184 scopus 로고    scopus 로고
    • An updated survey of GA-based multiobjective optimization techniques
    • C.A.C. Coello An updated survey of GA-based multiobjective optimization techniques ACM Computing Surveys 32 2000 109 143
    • (2000) ACM Computing Surveys , vol.32 , pp. 109-143
    • Coello, C.A.C.1
  • 22
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Dept of Information Computer Science, Irvine, CA
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases [http://www.ics.uci.edu/ mlearn/MLRepository.html], University of California, Dept of Information Computer Science, Irvine, CA, 1998.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 24
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • T. Lim, W. Loh, and Y. Shih A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms Machine Learning 40 2000 203 228
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.1    Loh, W.2    Shih, Y.3
  • 26
    • 0031701082 scopus 로고    scopus 로고
    • Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: A unified formulation
    • PII S1083442798001337
    • C. Fonseca, and P.J. Fleming Multiobjective optimization and multiple constraint handling with evolutionary algorithms. Part I. A unified formulation IEEE Transactions on Systems, Man and & Cybernetics, Part A 28 1998 26 37 (Pubitemid 128748052)
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans. , vol.28 , Issue.1 , pp. 26-37
    • Fonseca, C.M.1    Fleming, P.J.2
  • 28
    • 0037116765 scopus 로고    scopus 로고
    • Genetic local search for multi-objective combinatorial optimization
    • A. Jaszkiewicz Genetic local search for multi-objective combinatorial optimization European Journal of Operational Research 137 2002 50 71
    • (2002) European Journal of Operational Research , vol.137 , pp. 50-71
    • Jaszkiewicz, A.1
  • 30
    • 0003482370 scopus 로고    scopus 로고
    • An evolutionary algorithm for multiobjective optimization: The strength Pareto approach
    • Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
    • E. Zitzler, L. Thiele, An evolutionary algorithm for multiobjective optimization: the strength Pareto approach, Technical Report 43, Computer Engineering and Communications Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1998.
    • (1998) Technical Report 43, Computer Engineering and Communications Networks Lab (TIK)
    • Zitzler, E.1    Thiele, L.2
  • 31
    • 55649084793 scopus 로고    scopus 로고
    • A comparison of three evolutionary strategies for multiobjective genetic programming
    • Y. Zhang, and P.I. Rockett A comparison of three evolutionary strategies for multiobjective genetic programming Artificial Intelligence Reviews 27 2007 149 163
    • (2007) Artificial Intelligence Reviews , vol.27 , pp. 149-163
    • Zhang, Y.1    Rockett, P.I.2
  • 32
    • 0036718538 scopus 로고    scopus 로고
    • Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: A Pareto converging genetic algorithm
    • R. Kumar, and P.I. Rockett Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm Evolutionary Computation 10 2002 283 314
    • (2002) Evolutionary Computation , vol.10 , pp. 283-314
    • Kumar, R.1    Rockett, P.I.2
  • 33
    • 17044381107 scopus 로고    scopus 로고
    • Non-destructive depth-dependent crossover for genetic programming
    • Paris, France
    • T. Ito, H. Iba, and S. Sato Non-destructive depth-dependent crossover for genetic programming 1st European Workshop on Genetic Programming Paris, France 1998 14 15
    • (1998) 1st European Workshop on Genetic Programming , pp. 14-15
    • Ito, T.1    Iba, H.2    Sato, S.3
  • 35
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • O.L. Mangasarian, W.N. Street, and W.H. Wolberg Breast cancer diagnosis and prognosis via linear programming Operations Research 43 1995 570 577
    • (1995) Operations Research , vol.43 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 36
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • O.L. Mangasarian, and W.H. Wolberg Cancer diagnosis via linear programming SIAM News 23 1990 1 18
    • (1990) SIAM News , vol.23 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 40
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. Dietterich Approximate statistical tests for comparing supervised classification learning algorithms Neural Computation 10 1998 1895-1923
    • (1998) Neural Computation , vol.10
    • Dietterich, T.1
  • 41
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
    • E. Alpaydin Combined 5 × 2 cv F test for comparing supervised classification learning algorithms Neural Computation 11 1999 1885 1892
    • (1999) Neural Computation , vol.11 , pp. 1885-1892
    • Alpaydin, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.