-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
-
-
Burges, C.1
-
4
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-279, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-279
-
-
Cortes, C.1
Vapnik, V.2
-
6
-
-
0003000735
-
Faster-learning variations on backpropagation: An empirical study
-
D. Touretzky, G. Hinton, and T. Sejnowski, editors, San Mateo, CA, Morgan Kaufmann
-
S. E. Fahlman. Faster-learning variations on backpropagation: an empirical study. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, Pittsburg, pages 38-51, San Mateo, CA, 1988. Morgan Kaufmann.
-
(1988)
Proceedings of the 1988 Connectionist Models Summer School, Pittsburg
, pp. 38-51
-
-
Fahlman, S.E.1
-
7
-
-
0027294340
-
Improving model selection by nonconvergent methods
-
W. Finnoff, F. Hergert, and H. G. Zimmermann. Improving model selection by nonconvergent methods. Neural Networks, 6:771-783, 1993.
-
(1993)
Neural Networks
, vol.6
, pp. 771-783
-
-
Finnoff, W.1
Hergert, F.2
Zimmermann, H.G.3
-
8
-
-
32044449925
-
Generalised cross-validation as a method for choosing a good ridge parameter
-
G. H. Golub, M. Heath, and G. Wahba. Generalised cross-validation as a method for choosing a good ridge parameter. Technometrics, 2(21):215-223, 1979.
-
(1979)
Technometrics
, vol.2
, Issue.21
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
9
-
-
0025447562
-
A simple procedure for pruning backpropagation trained neural networks
-
E. D. Kamin. A simple procedure for pruning backpropagation trained neural networks. IEEE Trans. Neural Networks, 1(2):239-242, 1990.
-
(1990)
IEEE Trans. Neural Networks
, vol.1
, Issue.2
, pp. 239-242
-
-
Kamin, E.D.1
-
10
-
-
0000029122
-
A simple weight decay can improve generalization
-
J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Morgan Kaufmann, San Mateo, CA
-
A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4, pages 950-957. Morgan Kaufmann, San Mateo, CA, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 950-957
-
-
Krogh, A.1
Hertz, J.A.2
-
11
-
-
0000900876
-
Skeletonization: A technique for trimming the fat from a network via relevance assessment
-
M. C. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from a network via relevance assessment. Advances in Neural Information Processing (1), pages 107-115, 1989.
-
(1989)
Advances in Neural Information Processing
, vol.1
, pp. 107-115
-
-
Mozer, M.C.1
Smolensky, P.2
-
12
-
-
0031334889
-
An improved training algorithm for support vector machines
-
E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines. Neural Networks for Signal Processing VII, Proceedings of the 1997 IEEE Workshop, pages 276-285, 1997.
-
(1997)
Neural Networks for Signal Processing VII, Proceedings of the 1997 IEEE Workshop
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
13
-
-
0003789653
-
Support vector machines: Training and aplications
-
March
-
E. Osuna, R. Freund, and F. Girosi. Support vector machines: training and aplications. MIT AI Memo 1602, March 1997.
-
(1997)
MIT AI Memo 1602
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
14
-
-
0032495423
-
Sliding mode algorithm for training multi-layer neural networks
-
Jan
-
G. G. Parma, B. R. Menezes, and A. P. Braga. Sliding mode algorithm for training multi-layer neural networks. IEE Electronics Letters, 38(1):97-98, Jan. 1998.
-
(1998)
IEE Electronics Letters
, vol.38
, Issue.1
, pp. 97-98
-
-
Parma, G.G.1
Menezes, B.R.2
Braga, A.P.3
-
15
-
-
0032099978
-
Automatic early stopping using cross validation: Quantifying the criteria
-
L. Prechelt. Automatic early stopping using cross validation: quantifying the criteria. Neural Networks, 11(4):761-767, 1998.
-
(1998)
Neural Networks
, vol.11
, Issue.4
, pp. 761-767
-
-
Prechelt, L.1
-
16
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: The RPROP algorithm
-
San Francisco, CA, Apr
-
M. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural Networks, pages 586-591, San Francisco, CA, Apr. 1993.
-
(1993)
Proc. of the IEEE Intl. Conf. on Neural Networks
, pp. 586-591
-
-
Riedmiller, M.1
Braun, H.2
-
17
-
-
0022471098
-
Learning representations by back-propagating errors
-
D. E. Rumelhart. G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323:533-536, 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
19
-
-
0002252730
-
Cut-off method with space extension in convex programming problems
-
N. Z. Shor. Cut-off method with space extension in convex programming problems. Cybernetics, 12:94-96, 1977.
-
(1977)
Cybernetics
, vol.12
, pp. 94-96
-
-
Shor, N.Z.1
-
20
-
-
0031246982
-
H2/h-infinity multiobjective pid design
-
June
-
R. H. C. Takahashi, P. L. D. Peres, and P. A. V. Ferreira. H2/h-infinity multiobjective pid design. IEEE Control Systems Magazine, 17(5):37-47, June 1997.
-
(1997)
IEEE Control Systems Magazine
, vol.17
, Issue.5
, pp. 37-47
-
-
Takahashi, R.H.C.1
Peres, P.L.D.2
Ferreira, P.A.V.3
|