메뉴 건너뛰기




Volumn 31, Issue 5, 2010, Pages 498-505

Estimating adjusted NNTs in randomised controlled trials with binary outcomes: A simulation study

Author keywords

Adjustment for covariates; Logistic regression; Number needed to treat (NNT); Randomised controlled trials (RCTs); Risk difference (RD)

Indexed keywords

ACCURACY; ARTICLE; ATTRIBUTABLE RISK; DROSOPHILA; LOGISTIC REGRESSION ANALYSIS; MORTALITY; NUMBER NEEDED TO TREAT; OUTCOME ASSESSMENT; RANDOMIZED CONTROLLED TRIAL; RISK ASSESSMENT; SIMULATION;

EID: 77957754754     PISSN: 15517144     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cct.2010.07.005     Document Type: Article
Times cited : (14)

References (31)
  • 1
    • 29844450031 scopus 로고    scopus 로고
    • Number needed to treat (NNT)
    • Wiley, Chichester, P. Armitage, T. Colton (Eds.)
    • Bender R. Number needed to treat (NNT). Encyclopedia of biostatistics, 2nd Edition Vol 6 2005, 3752-3761. Wiley, Chichester. P. Armitage, T. Colton (Eds.).
    • (2005) Encyclopedia of biostatistics, 2nd Edition Vol 6 , pp. 3752-3761
    • Bender, R.1
  • 2
    • 51649085327 scopus 로고    scopus 로고
    • The "number needed to treat" turns 20 - and continues to be used and misused
    • McAlister F.A. The "number needed to treat" turns 20 - and continues to be used and misused. CMAJ 2008, 179:549-553.
    • (2008) CMAJ , vol.179 , pp. 549-553
    • McAlister, F.A.1
  • 3
    • 0036242532 scopus 로고    scopus 로고
    • Calculating the "number needed to be exposed" with adjustment for confounding variables in epidemiological studies
    • Bender R., Blettner M. Calculating the "number needed to be exposed" with adjustment for confounding variables in epidemiological studies. J Clin Epidemiol 2002, 55:525-530.
    • (2002) J Clin Epidemiol , vol.55 , pp. 525-530
    • Bender, R.1    Blettner, M.2
  • 4
    • 0036070996 scopus 로고    scopus 로고
    • Impact numbers: measures of risk factor impact on the whole population from case-control and cohort studies
    • Heller R.F., Dobson A.J., Attia J., Page J. Impact numbers: measures of risk factor impact on the whole population from case-control and cohort studies. J Epidemiol Community Health 2002, 56:606-610.
    • (2002) J Epidemiol Community Health , vol.56 , pp. 606-610
    • Heller, R.F.1    Dobson, A.J.2    Attia, J.3    Page, J.4
  • 5
    • 38849152842 scopus 로고    scopus 로고
    • Estimating adjusted NNT measures in logistic regression analysis
    • Bender R., Kuss O., Hildebrandt M., Gehrmann U. Estimating adjusted NNT measures in logistic regression analysis. Stat Med 2007, 26:5586-5595.
    • (2007) Stat Med , vol.26 , pp. 5586-5595
    • Bender, R.1    Kuss, O.2    Hildebrandt, M.3    Gehrmann, U.4
  • 6
    • 70849089154 scopus 로고    scopus 로고
    • Methods to calculate relative risks, risk differences, and numbers needed to treat from logistic regression
    • Bender R., Kuss O. Methods to calculate relative risks, risk differences, and numbers needed to treat from logistic regression. J Clin Epidemiol 2010, 63:7-8.
    • (2010) J Clin Epidemiol , vol.63 , pp. 7-8
    • Bender, R.1    Kuss, O.2
  • 7
    • 70649087031 scopus 로고    scopus 로고
    • Different measures of treatment effect for different research questions
    • Austin P.C. Different measures of treatment effect for different research questions. J Clin Epidemiol 2010, 63:9-10.
    • (2010) J Clin Epidemiol , vol.63 , pp. 9-10
    • Austin, P.C.1
  • 9
    • 0000029731 scopus 로고
    • Some surprising results about covariate adjustment in logistic regression models
    • Robinson L.D., Jewell N.P. Some surprising results about covariate adjustment in logistic regression models. Int Stat Rev 1991, 59:227-240.
    • (1991) Int Stat Rev , vol.59 , pp. 227-240
    • Robinson, L.D.1    Jewell, N.P.2
  • 10
    • 0031777876 scopus 로고    scopus 로고
    • Should we adjust for covariates in nonlinear regression analyses of randomized trials?
    • Hauck W.W., Anderson S., Marcus S.M. Should we adjust for covariates in nonlinear regression analyses of randomized trials?. Control Clin Trials 1998, 19:249-256.
    • (1998) Control Clin Trials , vol.19 , pp. 249-256
    • Hauck, W.W.1    Anderson, S.2    Marcus, S.M.3
  • 11
    • 2942592425 scopus 로고    scopus 로고
    • Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements
    • Hernández A.V., Steyerberg E.W., Habbema J.D.F. Covariate adjustment in randomized controlled trials with dichotomous outcomes increases statistical power and reduces sample size requirements. J Clin Epidemiol 2004, 57:454-460.
    • (2004) J Clin Epidemiol , vol.57 , pp. 454-460
    • Hernández, A.V.1    Steyerberg, E.W.2    Habbema, J.D.F.3
  • 12
    • 33847278858 scopus 로고    scopus 로고
    • The effect of omitted covariates on confidence interval and study power in binary outcome analysis: a simulation study
    • Negassa A., Hanley J.A. The effect of omitted covariates on confidence interval and study power in binary outcome analysis: a simulation study. Contemp Clin Trials 2007, 28:242-248.
    • (2007) Contemp Clin Trials , vol.28 , pp. 242-248
    • Negassa, A.1    Hanley, J.A.2
  • 13
    • 0032877437 scopus 로고    scopus 로고
    • A note on the number needed to treat
    • Lesaffre E., Pledger G. A note on the number needed to treat. Control Clin Trials 1999, 20:439-447.
    • (1999) Control Clin Trials , vol.20 , pp. 439-447
    • Lesaffre, E.1    Pledger, G.2
  • 14
    • 0141974142 scopus 로고    scopus 로고
    • A closer look at the distribution of number needed to treat (NNT): a Bayesian approach
    • Thabane L. A closer look at the distribution of number needed to treat (NNT): a Bayesian approach. Biostatistics 2003, 4:365-370.
    • (2003) Biostatistics , vol.4 , pp. 365-370
    • Thabane, L.1
  • 15
    • 0035074086 scopus 로고    scopus 로고
    • Calculating confidence intervals for the number needed to treat
    • Bender R. Calculating confidence intervals for the number needed to treat. Control Clin Trials 2001, 22:102-110.
    • (2001) Control Clin Trials , vol.22 , pp. 102-110
    • Bender, R.1
  • 17
    • 0032494717 scopus 로고    scopus 로고
    • Confidence intervals for the number needed to treat
    • Altman D.G. Confidence intervals for the number needed to treat. BMJ 1998, 317:1309-1312.
    • (1998) BMJ , vol.317 , pp. 1309-1312
    • Altman, D.G.1
  • 18
    • 77349087330 scopus 로고    scopus 로고
    • A data-generation process for data with specified risk differences or numbers needed to treat
    • Austin P.C. A data-generation process for data with specified risk differences or numbers needed to treat. Commun Stat B 2010, 39:563-57.
    • (2010) Commun Stat B , vol.39 , pp. 563-57
    • Austin, P.C.1
  • 19
    • 77957752028 scopus 로고    scopus 로고
    • Schätzung adjustierter NNTs mit Hilfe der logistischen Regression in randomisierten kontrollierten Versuchen - eine Simulationsstudie. Master Thesis, Master of Science in Epidemiology. Mainz: Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes-Gutenberg-University Mainz; 2010
    • Vervölgyi, V. Schätzung adjustierter NNTs mit Hilfe der logistischen Regression in randomisierten kontrollierten Versuchen - eine Simulationsstudie. Master Thesis, Master of Science in Epidemiology. Mainz: Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes-Gutenberg-University Mainz; 2010.
    • Vervölgyi, V.1
  • 20
    • 33847279277 scopus 로고
    • Sexual activity and the lifespan of male fruitflies: a dataset that gets attention
    • Hanley J.A., Shapiro A.P. Sexual activity and the lifespan of male fruitflies: a dataset that gets attention. J Stat Educ 1994, 2.
    • (1994) J Stat Educ , vol.2
    • Hanley, J.A.1    Shapiro, A.P.2
  • 21
    • 0038877464 scopus 로고    scopus 로고
    • Precision intervals for estimates of the difference in success rates for binary random variables based on the permutation principle
    • Röhmel J. Precision intervals for estimates of the difference in success rates for binary random variables based on the permutation principle. Biom J 1996, 8:977-993.
    • (1996) Biom J , vol.8 , pp. 977-993
    • Röhmel, J.1
  • 22
    • 77956887506 scopus 로고
    • A note on the general definition of the coefficient of determination
    • Nagelkerke N.J.D. A note on the general definition of the coefficient of determination. Biometrika 1991, 78:691-692.
    • (1991) Biometrika , vol.78 , pp. 691-692
    • Nagelkerke, N.J.D.1
  • 23
    • 58349088984 scopus 로고    scopus 로고
    • What's the risk? A simple approach for estimating adjusted risk measures from nonlinear models including logistic regression
    • Kleinman L.C., Norton E.C. What's the risk? A simple approach for estimating adjusted risk measures from nonlinear models including logistic regression. Health Serv Res 2009, 44:288-302.
    • (2009) Health Serv Res , vol.44 , pp. 288-302
    • Kleinman, L.C.1    Norton, E.C.2
  • 24
    • 70649092017 scopus 로고    scopus 로고
    • Absolute risk reductions, relative risks, relative risk reductions, and numbers needed to treat can be obtained from a logistic regression model
    • Austin P.C. Absolute risk reductions, relative risks, relative risk reductions, and numbers needed to treat can be obtained from a logistic regression model. J Clin Epidemiol 2010, 63:2-6.
    • (2010) J Clin Epidemiol , vol.63 , pp. 2-6
    • Austin, P.C.1
  • 25
    • 70649104793 scopus 로고    scopus 로고
    • Absolute risk reductions and numbers needed to treat can be obtained from adjusted survival models for time-to-event outcomes
    • Austin P.C. Absolute risk reductions and numbers needed to treat can be obtained from adjusted survival models for time-to-event outcomes. J Clin Epidemiol 2010, 63:46-55.
    • (2010) J Clin Epidemiol , vol.63 , pp. 46-55
    • Austin, P.C.1
  • 26
    • 77949391395 scopus 로고    scopus 로고
    • Estimating adjusted risk difference (RD) and number needed to treat (NNT) measures in the Cox regression model
    • Laubender R.P., Bender R. Estimating adjusted risk difference (RD) and number needed to treat (NNT) measures in the Cox regression model. Stat Med 2010, 29:851-859.
    • (2010) Stat Med , vol.29 , pp. 851-859
    • Laubender, R.P.1    Bender, R.2
  • 27
    • 0022629577 scopus 로고
    • Binomial regression in GLIM: Estimating risk ratios and risk differences
    • Wacholder S. Binomial regression in GLIM: Estimating risk ratios and risk differences. Am J Epidemiol 1986, 123:174-184.
    • (1986) Am J Epidemiol , vol.123 , pp. 174-184
    • Wacholder, S.1
  • 29
    • 24144458327 scopus 로고    scopus 로고
    • Easy SAS calculations for risk or prevalence ratios and differences
    • Spiegelman D., Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol 2005, 162:199-200.
    • (2005) Am J Epidemiol , vol.162 , pp. 199-200
    • Spiegelman, D.1    Hertzmark, E.2
  • 30
    • 36248939161 scopus 로고    scopus 로고
    • A modified least-squares regression approach to the estimation of risk difference
    • Cheung Y.B. A modified least-squares regression approach to the estimation of risk difference. Am J Epidemiol 2007, 166:1337-1344.
    • (2007) Am J Epidemiol , vol.166 , pp. 1337-1344
    • Cheung, Y.B.1
  • 31
    • 77956977309 scopus 로고    scopus 로고
    • Logistic regression was preferred to estimate risk differences and numbers needed to be exposed adjusted for covariates
    • 63: in press (DOI: 10.1016/j.jclinepi. 2010.01.011).
    • Gehrmann U, Kuss O, Wellmann J, Bender R. Logistic regression was preferred to estimate risk differences and numbers needed to be exposed adjusted for covariates. J Clin Epidemiol 2010; 63: in press (DOI: 10.1016/j.jclinepi. 2010.01.011).
    • (2010) J Clin Epidemiol
    • Gehrmann, U.1    Kuss, O.2    Wellmann, J.3    Bender, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.