-
3
-
-
33749366224
-
-
10.1126/science.1131091
-
S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006). 10.1126/science.1131091
-
(2006)
Science
, vol.313
, pp. 1942
-
-
Thiel, S.1
Hammerl, G.2
Schmehl, A.3
Schneider, C.W.4
Mannhart, J.5
-
4
-
-
49349087831
-
-
10.1038/nmat2223
-
M. Basletic, J.-L. Maurice, C. Carretero, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzenhouane, S. Fusil and A. Barthelemy, Nature Mater. 7, 621 (2008). 10.1038/nmat2223
-
(2008)
Nature Mater.
, vol.7
, pp. 621
-
-
Basletic, M.1
Maurice, J.-L.2
Carretero, C.3
Herranz, G.4
Copie, O.5
Bibes, M.6
Jacquet, E.7
Bouzenhouane, K.8
Fusil, S.9
Barthelemy, A.10
-
5
-
-
66649094797
-
-
10.1103/PhysRevLett.102.216804
-
O. Copie, V. Garcia, C. Bodefeld, C. Carretero, M. Bibes, G. Herranz, E. Jacquet, J.-L. Maurice, B. Vinter, S. Fusil, K. Bouzehouane, H. Jaffres, and A. Barthelemy, Phys. Rev. Lett. 102, 216804 (2009). 10.1103/PhysRevLett.102.216804
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 216804
-
-
Copie, O.1
Garcia, V.2
Bodefeld, C.3
Carretero, C.4
Bibes, M.5
Herranz, G.6
Jacquet, E.7
Maurice, J.-L.8
Vinter, B.9
Fusil, S.10
Bouzehouane, K.11
Jaffres, H.12
Barthelemy, A.13
-
6
-
-
33746314239
-
-
10.1063/1.2227786;
-
Y. Hotta, Y. Mukunoki, T. Susaki, H. Y. Hwang, L. Fitting, and D. A. Muller, Appl. Phys. Lett. 89, 031918 (2006) 10.1063/1.2227786
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 031918
-
-
Hotta, Y.1
Mukunoki, Y.2
Susaki, T.3
Hwang, H.Y.4
Fitting, L.5
Muller, D.A.6
-
8
-
-
33947320258
-
-
10.1103/PhysRevB.75.121404;
-
A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, and D. Winkler, Phys. Rev. B 75, 121404 (R) (2007) 10.1103/PhysRevB.75.121404
-
(2007)
Phys. Rev. B
, vol.75
, pp. 121404
-
-
Kalabukhov, A.1
Gunnarsson, R.2
Börjesson, J.3
Olsson, E.4
Claeson, T.5
Winkler, D.6
-
9
-
-
34547277540
-
-
10.1103/PhysRevLett.98.196802
-
W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, Phys. Rev. Lett. 98, 196802 (2007). 10.1103/PhysRevLett.98.196802
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 196802
-
-
Siemons, W.1
Koster, G.2
Yamamoto, H.3
Harrison, W.A.4
Lucovsky, G.5
Geballe, T.H.6
Blank, D.H.A.7
Beasley, M.R.8
-
10
-
-
56849127103
-
-
10.1103/PhysRevLett.101.216804
-
G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 101, 216804 (2008). 10.1103/PhysRevLett.101.216804
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 216804
-
-
Jackeli, G.1
Khaliullin, G.2
-
11
-
-
77954737992
-
-
10.1103/PhysRevB.80.241102
-
U. Lüders, W. C. Sheets, A. David, W. Prellier, and R. Frésard, Phys. Rev. B 80, 241102 (R) (2009). 10.1103/PhysRevB.80.241102
-
(2009)
Phys. Rev. B
, vol.80
, pp. 241102
-
-
Lüders, U.1
Sheets, W.C.2
David, A.3
Prellier, W.4
Frésard, R.5
-
12
-
-
0000369951
-
-
10.1063/1.120603
-
Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett, and M. Lee, Appl. Phys. Lett. 72, 978 (1998). 10.1063/1.120603
-
(1998)
Appl. Phys. Lett.
, vol.72
, pp. 978
-
-
Gan, Q.1
Rao, R.A.2
Eom, C.B.3
Garrett, J.L.4
Lee, M.5
-
14
-
-
50449084322
-
-
10.1103/PhysRevB.78.054427
-
B. R. K. Nanda and S. Satpathy, Phys. Rev. B 78, 054427 (2008). 10.1103/PhysRevB.78.054427
-
(2008)
Phys. Rev. B
, vol.78
, pp. 054427
-
-
Nanda, B.R.K.1
Satpathy, S.2
-
15
-
-
60349108845
-
-
10.1063/1.3082091
-
P.-H. Xiang, H. Yamada, A. Sawa, and H. Akoh, Appl. Phys. Lett. 94, 062109 (2009). 10.1063/1.3082091
-
(2009)
Appl. Phys. Lett.
, vol.94
, pp. 062109
-
-
Xiang, P.-H.1
Yamada, H.2
Sawa, A.3
Akoh, H.4
-
17
-
-
0000328933
-
-
10.1103/PhysRevB.53.12742;
-
H. Sawada, N. Hamada, K. Terakura, and T. Asada, Phys. Rev. B 53, 12742 (1996) 10.1103/PhysRevB.53.12742
-
(1996)
Phys. Rev. B
, vol.53
, pp. 12742
-
-
Sawada, H.1
Hamada, N.2
Terakura, K.3
Asada, T.4
-
18
-
-
0000588326
-
-
10.1103/PhysRevB.58.6831
-
H. Sawada and K. Terakura, Phys. Rev. B 58, 6831 (1998). 10.1103/PhysRevB.58.6831
-
(1998)
Phys. Rev. B
, vol.58
, pp. 6831
-
-
Sawada, H.1
Terakura, K.2
-
19
-
-
19744382097
-
-
10.1103/PhysRevLett.93.176404
-
Z. Fang and N. Nagaosa, Phys. Rev. Lett. 93, 176404 (2004). 10.1103/PhysRevLett.93.176404
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 176404
-
-
Fang, Z.1
Nagaosa, N.2
-
22
-
-
0942277843
-
-
10.1103/PhysRevLett.91.257202;
-
C. Ulrich, G. Khaliullin, J. Sirker, M. Reehuis, M. Ohl, S. Miyasaka, Y. Tokura, and B. Keimer, Phys. Rev. Lett. 91, 257202 (2003) 10.1103/PhysRevLett. 91.257202
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 257202
-
-
Ulrich, C.1
Khaliullin, G.2
Sirker, J.3
Reehuis, M.4
Ohl, M.5
Miyasaka, S.6
Tokura, Y.7
Keimer, B.8
-
24
-
-
42549133899
-
-
10.1103/PhysRevLett.100.167205
-
P. Horsch, A. M. Oleś, L. F. Feiner, and G. Khaliullin, Phys. Rev. Lett. 100, 167205 (2008). 10.1103/PhysRevLett.100.167205
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 167205
-
-
Horsch, P.1
Oleś, A.M.2
Feiner, L.F.3
Khaliullin, G.4
-
25
-
-
84913417125
-
-
10.1070/PU1982v025n04ABEH004537;
-
K. I. Kugel' and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982) 10.1070/PU1982v025n04ABEH004537
-
(1982)
Sov. Phys. Usp.
, vol.25
, pp. 231
-
-
Kugel, K.I.1
Khomskii, D.I.2
-
27
-
-
0034696977
-
-
10.1126/science.288.5465.462
-
Y. Tokura and N. Nagaosa, Science 288, 462 (2000). 10.1126/science.288. 5465.462
-
(2000)
Science
, vol.288
, pp. 462
-
-
Tokura, Y.1
Nagaosa, N.2
-
28
-
-
50049134043
-
-
10.1103/PhysRevB.78.054416
-
L. D. Tung, A. Ivanov, J. Schefer, M. R. Lees, G. Balakrishnan, and D. McK. Paul, Phys. Rev. B 78, 054416 (2008). 10.1103/PhysRevB.78.054416
-
(2008)
Phys. Rev. B
, vol.78
, pp. 054416
-
-
Tung, L.D.1
Ivanov, A.2
Schefer, J.3
Lees, M.R.4
Balakrishnan, G.5
McK. Paul, D.6
-
30
-
-
62549159116
-
-
10.1103/PhysRevB.79.075415;
-
T. Higuchi, Y. Hotta, T. Susaki, A. Fujimori, and H. Y. Hwang, Phys. Rev. B 79, 075415 (2009) 10.1103/PhysRevB.79.075415
-
(2009)
Phys. Rev. B
, vol.79
, pp. 075415
-
-
Higuchi, T.1
Hotta, Y.2
Susaki, T.3
Fujimori, A.4
Hwang, H.Y.5
-
31
-
-
77955402111
-
-
10.1103/Physics.2.12
-
E. Dagotto, Phys. 2, 12 (2009). 10.1103/Physics.2.12
-
(2009)
Phys.
, vol.2
, pp. 12
-
-
Dagotto, E.1
-
32
-
-
77957664273
-
-
The volume conservation corresponds to the Poisson ratio γ of 0.5. Unfortunately we have no information about the actual value of γ for LaVO3. Even if γ may deviate from 0.5 slightly, the results of the present calculations are qualitatively correct. However, the critical value of c/a corresponding to the phase boundary depends on γ. For example, if γ may be 0.7, which is the value for La1-x Srx MnO3 (Ref.), the c/a value for LaVO3 grown on LaAlO3 becomes 1.086, which is in the region (b) of Fig. . However, the whole total-energy curves are modified slightly by changing γ. We have confirmed that even with γ=0.7, the ordering of total energies for different SOs remain the same as that in Fig. with γ=0.5 for LaVO3 grown on LaAlO3 though the energy difference between G-SO and A-SO is reduced to only 3 meV/f.u.
-
The volume conservation corresponds to the Poisson ratio γ of 0.5. Unfortunately we have no information about the actual value of γ for LaVO 3. Even if γ may deviate from 0.5 slightly, the results of the present calculations are qualitatively correct. However, the critical value of c / a corresponding to the phase boundary depends on γ. For example, if γ may be 0.7, which is the value for La 1 - x Sr x MnO 3 (Ref.), the c / a value for LaVO 3 grown on LaAlO 3 becomes 1.086, which is in the region (b) of Fig.. However, the whole total-energy curves are modified slightly by changing γ. We have confirmed that even with γ = 0.7, the ordering of total energies for different SOs remain the same as that in Fig. with γ = 0.5 for LaVO 3 grown on LaAlO 3 though the energy difference between G -SO and A -SO is reduced to only 3 meV/f.u.
-
-
-
-
33
-
-
0033276468
-
-
10.1143/JPSJ.68.3790
-
Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai, H. Kuwahara, M. Kawasaki, K. Terakura, and Y. Tokura, J. Phys. Soc. Jpn. 68, 3790 (1999). 10.1143/JPSJ.68.3790
-
(1999)
J. Phys. Soc. Jpn.
, vol.68
, pp. 3790
-
-
Konishi, Y.1
Fang, Z.2
Izumi, M.3
Manako, T.4
Kasai, M.5
Kuwahara, H.6
Kawasaki, M.7
Terakura, K.8
Tokura, Y.9
-
34
-
-
77957672208
-
-
http://qmas.jp/
-
-
-
-
36
-
-
0001486791
-
-
10.1103/PhysRevB.57.1505
-
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998). 10.1103/PhysRevB.57.1505
-
(1998)
Phys. Rev. B
, vol.57
, pp. 1505
-
-
Dudarev, S.L.1
Botton, G.A.2
Savrasov, S.Y.3
Humphreys, C.J.4
Sutton, A.P.5
-
39
-
-
77957657295
-
-
http://www.openmx-square.org/
-
-
-
-
41
-
-
2942523326
-
-
10.1103/PhysRevLett.92.176403;
-
E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein, A. Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403 (2004) 10.1103/PhysRevLett.92. 176403
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 176403
-
-
Pavarini, E.1
Biermann, S.2
Poteryaev, A.3
Lichtenstein, A.I.4
Georges, A.5
Andersen, O.K.6
-
42
-
-
24344480915
-
-
10.1088/1367-2630/7/1/188;
-
E. Pavarini, A. Yamasaki, J. Nuss, and O. K. Andersen, New J. Phys. 7, 188 (2005) 10.1088/1367-2630/7/1/188
-
(2005)
New J. Phys.
, vol.7
, pp. 188
-
-
Pavarini, E.1
Yamasaki, A.2
Nuss, J.3
Andersen, O.K.4
-
43
-
-
9744225151
-
-
10.1088/1367-2630/6/1/154
-
M. Mochizuki and M. Imada, New J. Phys. 6, 154 (2004). 10.1088/1367-2630/6/1/154
-
(2004)
New J. Phys.
, vol.6
, pp. 154
-
-
Mochizuki, M.1
Imada, M.2
-
44
-
-
77957654605
-
-
In GGA+U calculation by OPENMX, the effective Coulomb parameter U is taken to be 2.0 eV rather than 3.0 eV in the corresponding calculation by QMAS. This difference in U between the two codes comes from the fact that OPENMX uses atomic orbital-like basis set while QMAS is based the PAW method with the plane-wave basis. Therefore U is applied to the atomic-orbital-like basis in OPENMX and to the smaller augmentation region in QMAS. We confirmed that two results by two calculations are very similar
-
In GGA + U calculation by OPENMX, the effective Coulomb parameter U is taken to be 2.0 eV rather than 3.0 eV in the corresponding calculation by QMAS. This difference in U between the two codes comes from the fact that OPENMX uses atomic orbital-like basis set while QMAS is based the PAW method with the plane-wave basis. Therefore U is applied to the atomic-orbital-like basis in OPENMX and to the smaller augmentation region in QMAS. We confirmed that two results by two calculations are very similar.
-
-
-
-
45
-
-
33747038422
-
-
10.1103/PhysRevB.74.054412
-
I. V. Solovyev, Phys. Rev. B 74, 054412 (2006). 10.1103/PhysRevB.74. 054412
-
(2006)
Phys. Rev. B
, vol.74
, pp. 054412
-
-
Solovyev, I.V.1
-
47
-
-
77957654010
-
-
In Eqs. , contributions from pair excitations to intermediate states are included while they are not taken account of in the exchange passes shown in Fig. .
-
In Eqs., contributions from pair excitations to intermediate states are included while they are not taken account of in the exchange passes shown in Fig..
-
-
-
-
48
-
-
77957668036
-
-
) 2 /3.0≈1.5meV.
-
) 2 / 3.0 ≈ 1.5 meV.
-
-
-
-
49
-
-
0345877775
-
-
+ ), see, 10.1107/S0108768196010713
-
+), see P. W. Woodward, Acta Crystallogr., Sect. B: Struct. Sci. 53, 32 (1997). 10.1107/ S0108768196010713
-
(1997)
Acta Crystallogr., Sect. B: Struct. Sci.
, vol.53
, pp. 32
-
-
Woodward, P.W.1
|