메뉴 건너뛰기




Volumn 49, Issue 19, 2010, Pages 9184-9194

Unsupervised process fault detection with random forests

Author keywords

[No Author keywords available]

Indexed keywords

ADVANCED DIAGNOSTIC SYSTEMS; BINARY DECISION TREES; CLASSIFICATION AND REGRESSION TREE; COMPLEX SYSTEMS; DATA-DRIVEN; DIMENSIONAL SPACES; ENVIRONMENTALLY RESPONSIBLE; MINERAL PROCESSING PLANTS; MODEL RESPONSE; MONITORING TECHNOLOGIES; NONLINEAR PROCESS; PROCESS FAULT DETECTION; RANDOM FORESTS; RAPID DEVELOPMENT; REAL-WORLD; UNSTEADY STATE;

EID: 77957600831     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie901975c     Document Type: Article
Times cited : (24)

References (20)
  • 1
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor, J. F.; Kourti, T. Statistical process control of multivariate processes Control Eng. Pract. 1995, 3, 403-414
    • (1995) Control Eng. Pract. , vol.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 2
    • 0028354319 scopus 로고
    • Exponentially weighted moving principal components analysis and projections to latent structures
    • Wold, S. Exponentially weighted moving principal components analysis and projections to latent structures Chemom. Intellig. Lab. Syst. 1994, 23, 149-161
    • (1994) Chemom. Intellig. Lab. Syst. , vol.23 , pp. 149-161
    • Wold, S.1
  • 3
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intellig. Lab. Syst. 1995, 30, 179-196
    • (1995) Chemom. Intellig. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 4
    • 1142309573 scopus 로고    scopus 로고
    • Sensor fault identification based on time-lagged PCA in dynamic processes
    • DOI 10.1016/j.chemolab.2003.10.011
    • Lee, C.; Choi, S. W.; Lee, I. Sensor fault identification based on time-lagged PCA in dynamic processes Chemom. Intellig. Lab. Syst. 2004, 70, 165-178 (Pubitemid 38210410)
    • (2004) Chemometrics and Intelligent Laboratory Systems , vol.70 , Issue.2 , pp. 165-178
    • Lee, C.1    Choi, S.W.2    Lee, I.-B.3
  • 5
    • 64949202636 scopus 로고    scopus 로고
    • Random forests classifier for machine fault diagnosis
    • Yang, B.; Di, X.; Han, T. Random forests classifier for machine fault diagnosis J. Mech. Sci. Technol. 2008, 22, 1716-1725
    • (2008) J. Mech. Sci. Technol. , vol.22 , pp. 1716-1725
    • Yang, B.1    Di, X.2    Han, T.3
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests Mach. Learn. 2001, 45, 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 10
    • 0003825410 scopus 로고    scopus 로고
    • Monographs on Statistics and Applied Probability; Chapman & Hall: London
    • Cox, T. F.; Cox, M. A. A. In Multidimensional Scaling; Monographs on Statistics and Applied Probability; Chapman & Hall: London, 2001; Vol. 88.
    • (2001) Multidimensional Scaling , vol.88
    • Cox, T.F.1    Cox, M.A.A.2
  • 12
    • 33645573203 scopus 로고    scopus 로고
    • Unsupervised learning with random forest predictors
    • Shi, T.; Horvath, S. Unsupervised learning with random forest predictors J. Comput. Graph. Stat. 2006, 15, 118-138
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 118-138
    • Shi, T.1    Horvath, S.2
  • 13
    • 33747789519 scopus 로고    scopus 로고
    • Kernel-based fault diagnosis on mineral processing plants
    • Jemwa, G. T.; Aldrich, C. Kernel-based fault diagnosis on mineral processing plants Min. Eng. 2006, 19, 1149-1162
    • (2006) Min. Eng. , vol.19 , pp. 1149-1162
    • Jemwa, G.T.1    Aldrich, C.2
  • 14
    • 4944228528 scopus 로고    scopus 로고
    • Technical Report; Department of Computer Science, National Taiwan University: Taipei, Taiwan, (Accessed March 30, 2009)
    • Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Machine Classification; Technical Report; Department of Computer Science, National Taiwan University: Taipei, Taiwan, 2003; available at: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (Accessed March 30, 2009).
    • (2003) A Practical Guide to Support Vector Machine Classification
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 15
    • 48649110141 scopus 로고    scopus 로고
    • Technical Report CS2008-0923; Department of Computer Science, University of California at San Diego: San Diego, CA, (Accessed October 21, 2009)
    • Cayton, L. Algorithms for Manifold Learning; Technical Report CS2008-0923; Department of Computer Science, University of California at San Diego: San Diego, CA, 2005; available at: http://people.kyb.tuebingen.mpg.de/ lcayton/resexam.pdf (Accessed October 21, 2009).
    • (2005) Algorithms for Manifold Learning
    • Cayton, L.1
  • 17
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer, M. A. Nonlinear principal component analysis using autoassociative neural networks AIChE J. 1991, 37, 233-243
    • (1991) AIChE J. , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 19
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 20
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technique and statistical analysis
    • Zhang, Y.; Qin, S. J. Improved nonlinear fault detection technique and statistical analysis AIChE J. 2008, 54, 3207-3220
    • (2008) AIChE J. , vol.54 , pp. 3207-3220
    • Zhang, Y.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.