-
1
-
-
11944274056
-
-
10.1126/science.269.5221.198
-
M. H. Anderson, Science 269, 198 (1995). 10.1126/science.269.5221.198
-
(1995)
Science
, vol.269
, pp. 198
-
-
Anderson, M.H.1
-
2
-
-
4244115335
-
-
10.1103/PhysRevLett.75.3969
-
K. B. Davis, Phys. Rev. Lett. 75, 3969 (1995). 10.1103/PhysRevLett.75. 3969
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 3969
-
-
Davis, K.B.1
-
3
-
-
0004145387
-
-
See, for example, edited by A. Griffin, D. W. Snoke, and S. Stringari (Cambridge University Press, Cambridge, England
-
See, for example, Bose-Einstein Condensation, edited by, A. Griffin,,, D. W. Snoke,, and, S. Stringari, (Cambridge University Press, Cambridge, England, 1995).
-
(1995)
Bose-Einstein Condensation
-
-
-
5
-
-
33749189629
-
-
10.1038/nature05131
-
J. Kasprzak, Nature (London) 443, 409 (2006). 10.1038/nature05131
-
(2006)
Nature (London)
, vol.443
, pp. 409
-
-
Kasprzak, J.1
-
6
-
-
34249037455
-
-
10.1126/science.1140990
-
R. Balili, Science 316, 1007 (2007). 10.1126/science.1140990
-
(2007)
Science
, vol.316
, pp. 1007
-
-
Balili, R.1
-
7
-
-
33746401592
-
-
10.1103/PhysRevB.74.045211and references therein.
-
J. I. Jang and J. P. Wolfe, Phys. Rev. B 74, 045211 (2006) 10.1103/PhysRevB.74.045211
-
(2006)
Phys. Rev. B
, vol.74
, pp. 045211
-
-
Jang, J.I.1
Wolfe, J.P.2
-
8
-
-
0037605199
-
-
10.1103/PhysRevLett.67.2343
-
D. Fröhlich, Phys. Rev. Lett. 67, 2343 (1991). 10.1103/PhysRevLett. 67.2343
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 2343
-
-
Fröhlich, D.1
-
9
-
-
0001726747
-
-
10.1103/PhysRevB.56.13066
-
M. Y. Shen, Phys. Rev. B 56, 13066 (1997). 10.1103/PhysRevB.56.13066
-
(1997)
Phys. Rev. B
, vol.56
, pp. 13066
-
-
Shen, M.Y.1
-
10
-
-
0000520493
-
-
10.1103/PhysRevB.63.125323
-
Y. Sun, Phys. Rev. B 63, 125323 (2001). 10.1103/PhysRevB.63.125323
-
(2001)
Phys. Rev. B
, vol.63
, pp. 125323
-
-
Sun, Y.1
-
11
-
-
18144379559
-
-
10.1103/PhysRevLett.94.016403
-
M. Kubouchi, Phys. Rev. Lett. 94, 016403 (2005). 10.1103/PhysRevLett.94. 016403
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 016403
-
-
Kubouchi, M.1
-
13
-
-
33846393967
-
-
10.1103/PhysRevB.74.245127
-
T. Tayagaki, Phys. Rev. B 74, 245127 (2006). 10.1103/PhysRevB.74.245127
-
(2006)
Phys. Rev. B
, vol.74
, pp. 245127
-
-
Tayagaki, T.1
-
14
-
-
35748935251
-
-
10.1103/PhysRevB.76.155210
-
J. I. Jang and J. B. Ketterson, Phys. Rev. B 76, 155210 (2007). 10.1103/PhysRevB.76.155210
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155210
-
-
Jang, J.I.1
Ketterson, J.B.2
-
15
-
-
40949106551
-
-
10.1103/PhysRevB.77.075201
-
J. I. Jang, Phys. Rev. B 77, 075201 (2008). 10.1103/PhysRevB.77.075201
-
(2008)
Phys. Rev. B
, vol.77
, pp. 075201
-
-
Jang, J.I.1
-
17
-
-
45249121787
-
-
10.1103/PhysRevLett.100.233001
-
T. Ideguchi, Phys. Rev. Lett. 100, 233001 (2008). 10.1103/PhysRevLett. 100.233001
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 233001
-
-
Ideguchi, T.1
-
18
-
-
52949130950
-
-
10.1063/1.2990660
-
J. I. Jang, Appl. Phys. Lett. 93, 121111 (2008). 10.1063/1.2990660
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 121111
-
-
Jang, J.I.1
-
19
-
-
77957587726
-
-
The polariton concept is not explicitly introduced in Refs.; however, coherent polaritons are the entity generated under resonant two-photon excitation (see Ref.)
-
The polariton concept is not explicitly introduced in Refs.; however, coherent polaritons are the entity generated under resonant two-photon excitation (see Ref.).
-
-
-
-
20
-
-
70349222746
-
-
10.1364/OL.34.002817
-
S. E. Mani, Opt. Lett. 34, 2817 (2009). 10.1364/OL.34.002817
-
(2009)
Opt. Lett.
, vol.34
, pp. 2817
-
-
Mani, S.E.1
-
23
-
-
77957581388
-
-
If the sample is infinitely thick, the incident IR photons N should be all absorbed and the number of polaritons generated is simply N/2, independent of I0 (Z)
-
If the sample is infinitely thick, the incident IR photons N should be all absorbed and the number of polaritons generated is simply N / 2, independent of I 0 (Z).
-
-
-
-
24
-
-
33845265885
-
-
10.1103/PhysRevB.74.235204
-
J. I. Jang, Phys. Rev. B 74, 235204 (2006). 10.1103/PhysRevB.74.235204
-
(2006)
Phys. Rev. B
, vol.74
, pp. 235204
-
-
Jang, J.I.1
-
25
-
-
0001561724
-
-
10.1103/PhysRevB.13.1728
-
M. M. Beg and S. M. Shapiro, Phys. Rev. B 13, 1728 (1976). 10.1103/PhysRevB.13.1728
-
(1976)
Phys. Rev. B
, vol.13
, pp. 1728
-
-
Beg, M.M.1
Shapiro, S.M.2
-
26
-
-
84882298701
-
-
3rd ed. (Academic Press, San Diego
-
R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, 2008), p. 119.
-
(2008)
Nonlinear Optics
, pp. 119
-
-
Boyd, R.W.1
-
27
-
-
0034668647
-
-
10.1103/PhysRevB.62.12909
-
K. E. O'Hara and J. P. Wolfe, Phys. Rev. B 62, 12909 (2000). 10.1103/PhysRevB.62.12909
-
(2000)
Phys. Rev. B
, vol.62
, pp. 12909
-
-
O'Hara, K.E.1
Wolfe, J.P.2
-
28
-
-
0035322566
-
-
A platelet of this size can be achieved by lapping a bulk crystal. Smaller node numbers and large mode spacings would require a thinner sample; a promising technology to make thin films showing sharp exciton lines was reported by, 10.1557/JMR.2001.0130. Band gaps could also be engineered by forming a hole array in a thin film that supports waveguide polariton modes
-
A platelet of this size can be achieved by lapping a bulk crystal. Smaller node numbers and large mode spacings would require a thinner sample; a promising technology to make thin films showing sharp exciton lines was reported by P. R. Markworth, J. Mater. Res. 16, 914 (2001) 10.1557/JMR.2001.0130
-
(2001)
J. Mater. Res.
, vol.16
, pp. 914
-
-
Markworth, P.R.1
|