메뉴 건너뛰기




Volumn 49, Issue 19, 2010, Pages 9423-9429

Prediction of pressure drop using artificial neural network for gas non-newtonian liquid flow through piping components

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; EXPERIMENTAL DATA; FIRST-PRINCIPLES; FRICTIONAL PRESSURE DROPS; GATE VALVE; GLOBE VALVE; HIDDEN LAYERS; HORIZONTAL PIPES; HORIZONTAL TUBES; MULTI LAYER PERCEPTRON; NON-NEWTONIAN; PIPING COMPONENTS; POWER-LAW; UNIVERSITY OF CALCUTTA;

EID: 77957560004     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie1007739     Document Type: Article
Times cited : (31)

References (25)
  • 2
    • 0005330974 scopus 로고    scopus 로고
    • Gas-non-Newtonian liquid flow through globe and gate valves
    • Banerjee, T. K.; Das, S. K. Gas-non-Newtonian liquid flow through globe and gate valves Chem. Eng. Commun. 1998, 167, 133-146
    • (1998) Chem. Eng. Commun. , vol.167 , pp. 133-146
    • Banerjee, T.K.1    Das, S.K.2
  • 3
    • 0032829999 scopus 로고    scopus 로고
    • Pressure loses in orifices for the flow of gas-non-Newtonian liquids
    • Samanta, A. K.; Banerjee, T. K.; Das, S. K. Pressure loses in orifices for the flow of gas-non-Newtonian liquids Can. J. Chem. Eng. 1999, 77, 579-583
    • (1999) Can. J. Chem. Eng. , vol.77 , pp. 579-583
    • Samanta, A.K.1    Banerjee, T.K.2    Das, S.K.3
  • 5
    • 0001798317 scopus 로고    scopus 로고
    • Non-Newtonian Liquid Flow through Globe and Gate Valves
    • Chermisinoff N.P., Ed.; Advances in Engineering Fluid Mechanics Series; Gulf Professional Publishing: Houston, TX,; Chapter 17
    • Das, S. K. Non-Newtonian Liquid Flow through Globe and Gate Valves. In Multiphase Reactor and Polymerization System Hydrodynamics; Chermisinoff, N. P., Ed.; Advances in Engineering Fluid Mechanics Series; Gulf Professional Publishing: Houston, TX, 1996; Chapter 17, pp 487 - 505.
    • (1996) Multiphase Reactor and Polymerization System Hydrodynamics , pp. 487-505
    • Das, S.K.1
  • 6
    • 0024764340 scopus 로고
    • Pressure loses in two-phase gas-non-Newtonian liquid flow in horizontal tube
    • Das, S. K.; Biswas, M. N.; Mitra, A. K. Pressure loses in two-phase gas-non-Newtonian liquid flow in horizontal tube J. Pipelines 1989, 7, 307-325
    • (1989) J. Pipelines , vol.7 , pp. 307-325
    • Das, S.K.1    Biswas, M.N.2    Mitra, A.K.3
  • 7
    • 0034372481 scopus 로고    scopus 로고
    • Application of artificial neural networks in Chemical engineering
    • Himmelblau, D. M. Application of artificial neural networks in Chemical engineering Korean J. Chem. Eng 2000, 17 (4) 373-392
    • (2000) Korean J. Chem. Eng , vol.17 , Issue.4 , pp. 373-392
    • Himmelblau, D.M.1
  • 8
    • 28644432320 scopus 로고    scopus 로고
    • Advantages and disadvantages of different crash modeling techniques
    • Sando, T.; Renatus, M.; Sabanjo, J.; Sapinhour, L. Advantages and disadvantages of different crash modeling techniques J. Safety Res. 2005, 36, 485-487
    • (2005) J. Safety Res. , vol.36 , pp. 485-487
    • Sando, T.1    Renatus, M.2    Sabanjo, J.3    Sapinhour, L.4
  • 9
    • 0000646059 scopus 로고
    • Learning Internal Representations by Error Propagation
    • Rumelhart, D. E.; McClelland, J. L., Eds.; MIT Press: Cambridge, MA
    • Rumelhart, D.; Hinton, G.; Williams, R. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing; Rumelhart, D. E.; McClelland, J. L., Eds.; MIT Press: Cambridge, MA, 1986.
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 10
    • 0342400080 scopus 로고
    • Neural network for your Toolbox
    • 31
    • Bullock, D.; Brown, J.; Cook, D. Neural network for your Toolbox Agric. Eng. 1992, 73, 10-12 31
    • (1992) Agric. Eng. , vol.73 , pp. 10-12
    • Bullock, D.1    Brown, J.2    Cook, D.3
  • 11
    • 0028484517 scopus 로고
    • Neural network contributions in biotechnology
    • Montagu, G.; Morris, J. Neural network contributions in biotechnology TBITECH 1994, 12 (8) 312-323
    • (1994) TBITECH , vol.12 , Issue.8 , pp. 312-323
    • Montagu, G.1    Morris, J.2
  • 12
    • 0030242981 scopus 로고    scopus 로고
    • Application of artificial neural networks to investigate the drying of cooked rice
    • Ramesh, M. N.; Kumar, M. A.; Rao, S. Application of artificial neural networks to investigate the drying of cooked rice J. Food Proc. Eng. 1996, 19, 321-329
    • (1996) J. Food Proc. Eng. , vol.19 , pp. 321-329
    • Ramesh, M.N.1    Kumar, M.A.2    Rao, S.3
  • 13
    • 71349088571 scopus 로고    scopus 로고
    • The practical research on flood forescasting based on artificial neural network
    • Feng, L.-H.; Lu, J. The practical research on flood forescasting based on artificial neural network Expert Syst. Appl. 2010, 37 (4) 2974-2977
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 2974-2977
    • Feng, L.-H.1    Lu, J.2
  • 14
    • 77952422668 scopus 로고    scopus 로고
    • Application of artificial neural network for gold-silver deposits potential mapping - A case study of Korea
    • DOI: 10.1007/s11053-010-9112-2
    • Oh, H. J.; Lee, S. Application of artificial neural network for gold-silver deposits potential mapping-a case study of Korea Nat. Resour. Res. 2010, DOI: 10.1007/s11053-010-9112-2
    • (2010) Nat. Resour. Res.
    • Oh, H.J.1    Lee, S.2
  • 15
    • 0343005936 scopus 로고    scopus 로고
    • Artificial neural networks: A new tool for prediction of pressure drop of non-Newtonian fluid foods through tubes
    • Adhikari, B.; Jindal, V. K. Artificial neural networks: a new tool for prediction of pressure drop of non-Newtonian fluid foods through tubes J. Food Eng. 2000, 46, 43-51
    • (2000) J. Food Eng. , vol.46 , pp. 43-51
    • Adhikari, B.1    Jindal, V.K.2
  • 17
    • 0035074424 scopus 로고    scopus 로고
    • Determination of the physical properties of bitumens by use of near-infrared spectroscopy with neural network. Joint modeling of linear and non-linear parameters
    • Blanco, M.; Maspoch, S.; Villarroya, I.; Peralta, X.; Gonzalez, J. M.; Torres, J. Determination of the physical properties of bitumens by use of near-infrared spectroscopy with neural network. Joint modeling of linear and non-linear parameters Analyst 2001, 126 (3) 378-382
    • (2001) Analyst , vol.126 , Issue.3 , pp. 378-382
    • Blanco, M.1    Maspoch, S.2    Villarroya, I.3    Peralta, X.4    Gonzalez, J.M.5    Torres, J.6
  • 18
    • 0038375098 scopus 로고    scopus 로고
    • Development of an artificial neural network correlation for prediction of overall gas holdup in bobble column reactors
    • Shaikh, A.; Al-Dahhan, M. Development of an artificial neural network correlation for prediction of overall gas holdup in bobble column reactors Chem. Eng. Proc. 2003, 42, 599-610
    • (2003) Chem. Eng. Proc. , vol.42 , pp. 599-610
    • Shaikh, A.1    Al-Dahhan, M.2
  • 19
    • 0346734327 scopus 로고    scopus 로고
    • 2003. Flow regime identification in gas/liquid/pulp fibre slurry flows based on pressure fluctuations using artificial neural networks
    • Xie, T.; Ghiaasiaan, S. M.; Karrila, S. 2003. Flow regime identification in gas/liquid/pulp fibre slurry flows based on pressure fluctuations using artificial neural networks Ind. Eng. Chem. Res. 2003, 42, 7017-7024
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 7017-7024
    • Xie, T.1    Ghiaasiaan, S.M.2    Karrila, S.3
  • 20
    • 0037221814 scopus 로고    scopus 로고
    • 2003. Explicit Calculation of the friction factor in pipeline flow of Bingham plastic fluids: A neural network approach
    • Sablani, S. S.; Shayya, W. H.; Kachimov, A. 2003. Explicit Calculation of the friction factor in pipeline flow of Bingham plastic fluids: A neural network approach Chem. Eng. Sci. 2003, 58 (1) 99-106
    • (2003) Chem. Eng. Sci. , vol.58 , Issue.1 , pp. 99-106
    • Sablani, S.S.1    Shayya, W.H.2    Kachimov, A.3
  • 21
    • 0037401950 scopus 로고    scopus 로고
    • Neural network based non-iterative calculation of the friction factor for power law fluids
    • Sablani, S. S.; Shayya, W. H. Neural network based non-iterative calculation of the friction factor for power law fluids J. Food Eng. 2003, 57 (4) 327-335
    • (2003) J. Food Eng. , vol.57 , Issue.4 , pp. 327-335
    • Sablani, S.S.1    Shayya, W.H.2
  • 23
    • 43849102671 scopus 로고    scopus 로고
    • Apparent viscosity prediction of Alumina-paraffin suspensions using artificial neural networks
    • Torkar, D.; Novak, S.; Novak, F. Apparent viscosity prediction of Alumina-paraffin suspensions using artificial neural networks J. Mater. Process. Technol. 2008, 203 (1 - 3) 208-215
    • (2008) J. Mater. Process. Technol. , vol.203 , Issue.1-3 , pp. 208-215
    • Torkar, D.1    Novak, S.2    Novak, F.3
  • 24
    • 38949144672 scopus 로고    scopus 로고
    • Development of an artificial neural network correlation for prediction of hold-up of slurry transport in pipelines
    • Lahiri, S. K.; Ghanta, K. C. Development of an artificial neural network correlation for prediction of hold-up of slurry transport in pipelines Chem. Eng. Sci. 2008, 63, 1497-1509
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 1497-1509
    • Lahiri, S.K.1    Ghanta, K.C.2
  • 25
    • 41449109567 scopus 로고    scopus 로고
    • Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous by Antep pistachio (Pistacia Vera L.) shells
    • Yetilmezsoy, K.; Demirel, S. Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous by Antep pistachio (Pistacia Vera L.) shells J. Hazard. Mater. 2008, 153, 1288-1300
    • (2008) J. Hazard. Mater. , vol.153 , pp. 1288-1300
    • Yetilmezsoy, K.1    Demirel, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.