-
1
-
-
34047258515
-
-
10.1103/RevModPhys.79.469
-
I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007). 10.1103/RevModPhys.79.469
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 469
-
-
Beloborodov, I.S.1
Lopatin, A.V.2
Vinokur, V.M.3
Efetov, K.B.4
-
2
-
-
0037561487
-
-
10.1103/PhysRevB.67.174205;
-
K. B. Efetov and A. Tschersich, Phys. Rev. B 67, 174205 (2003) 10.1103/PhysRevB.67.174205
-
(2003)
Phys. Rev. B
, vol.67
, pp. 174205
-
-
Efetov, K.B.1
Tschersich, A.2
-
4
-
-
0942300778
-
-
10.1103/PhysRevLett.91.246801
-
I. S. Beloborodov, K. B. Efetov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. Lett. 91, 246801 (2003). 10.1103/PhysRevLett.91.246801
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 246801
-
-
Beloborodov, I.S.1
Efetov, K.B.2
Lopatin, A.V.3
Vinokur, V.M.4
-
5
-
-
0003460093
-
-
in edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam
-
B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, edited by, A. L. Efros, and, M. Pollak, (North-Holland, Amsterdam, 1985).
-
(1985)
Electron-Electron Interactions in Disordered Systems
-
-
Altshuler, B.L.1
Aronov, A.G.2
-
6
-
-
0038437103
-
-
10.1103/PhysRevB.36.1962
-
R. W. Simon, B. J. Dalrymple, D. Van Vechten, W. W. Fuller, and S. A. Wolf, Phys. Rev. B 36, 1962 (1987). 10.1103/PhysRevB.36.1962
-
(1987)
Phys. Rev. B
, vol.36
, pp. 1962
-
-
Simon, R.W.1
Dalrymple, B.J.2
Van Vechten, D.3
Fuller, W.W.4
Wolf, S.A.5
-
7
-
-
0038098061
-
-
10.1088/0953-8984/2/41/004
-
A. Gerber, J. Phys.: Condens. Matter 2, 8161 (1990). 10.1088/0953-8984/2/ 41/004
-
(1990)
J. Phys.: Condens. Matter
, vol.2
, pp. 8161
-
-
Gerber, A.1
-
8
-
-
4243394657
-
-
10.1103/PhysRevLett.78.4277
-
A. Gerber, A. Milner, G. Deutscher, M. Karpovsky, and A. Gladkikh, Phys. Rev. Lett. 78, 4277 (1997). 10.1103/PhysRevLett.78.4277
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 4277
-
-
Gerber, A.1
Milner, A.2
Deutscher, G.3
Karpovsky, M.4
Gladkikh, A.5
-
9
-
-
29744459849
-
-
10.1103/PhysRevB.72.233407
-
L. Rotkina, S. Oh, J. N. Eckstein, and S. V. Rotkin, Phys. Rev. B 72, 233407 (2005). 10.1103/PhysRevB.72.233407
-
(2005)
Phys. Rev. B
, vol.72
, pp. 233407
-
-
Rotkina, L.1
Oh, S.2
Eckstein, J.N.3
Rotkin, S.V.4
-
10
-
-
0344357692
-
-
10.1080/00018737500101431
-
B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975). 10.1080/00018737500101431
-
(1975)
Adv. Phys.
, vol.24
, pp. 407
-
-
Abeles, B.1
Sheng, P.2
Coutts, M.D.3
Arie, Y.4
-
11
-
-
27144530976
-
-
10.1103/PhysRevLett.95.076806
-
T. B. Tran, I. Beloborodov, X. M. Lin, T. P. Bigioni, V. M. Vinokur, and H. M. Jaeger, Phys. Rev. Lett. 95, 076806 (2005). 10.1103/PhysRevLett.95.076806
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 076806
-
-
Tran, T.B.1
Beloborodov, I.2
Lin, X.M.3
Bigioni, T.P.4
Vinokur, V.M.5
Jaeger, H.M.6
-
13
-
-
19544389649
-
-
10.1103/PhysRevB.70.073404
-
I. S. Beloborodov, A. V. Lopatin, G. Schwiete, and V. M. Vinokur, Phys. Rev. B 70, 073404 (2004). 10.1103/PhysRevB.70.073404
-
(2004)
Phys. Rev. B
, vol.70
, pp. 073404
-
-
Beloborodov, I.S.1
Lopatin, A.V.2
Schwiete, G.3
Vinokur, V.M.4
-
16
-
-
38049070983
-
-
10.1088/0957-4484/19/04/045711
-
Y. H. Lin, Y. C. Sun, W. B. Jian, H. M. Chang, Y. S. Huang, and J. J. Lin, Nanotechnology 19, 045711 (2008). 10.1088/0957-4484/19/04/045711
-
(2008)
Nanotechnology
, vol.19
, pp. 045711
-
-
Lin, Y.H.1
Sun, Y.C.2
Jian, W.B.3
Chang, H.M.4
Huang, Y.S.5
Lin, J.J.6
-
17
-
-
0141636068
-
-
It should be aware that the σ∞-exp (√ T0 /T ) dependence can alternatively and satisfactorily be explained by the conductivity theory of, 10.1103/PhysRevLett.31.44. Further experiments to critically discriminate the microscopic origins of this temperature behavior in the insulating regime would be highly meaningful.
-
It should be aware that the σ ∞ - exp (√ T 0 / T) dependence can alternatively and satisfactorily be explained by the conductivity theory of P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973) 10.1103/PhysRevLett.31.44
-
(1973)
Phys. Rev. Lett.
, vol.31
, pp. 44
-
-
Sheng, P.1
Abeles, B.2
Arie, Y.3
-
18
-
-
0347826035
-
-
10.1088/0508-3443/16/10/309
-
P. A. Gould, Br. J. Appl. Phys. 16, 1481 (1965). 10.1088/0508-3443/16/10/ 309
-
(1965)
Br. J. Appl. Phys.
, vol.16
, pp. 1481
-
-
Gould, P.A.1
-
20
-
-
60949112391
-
-
10.1103/PhysRevB.79.012411
-
S. S. Yeh and J. J. Lin, Phys. Rev. B 79, 012411 (2009). 10.1103/PhysRevB.79.012411
-
(2009)
Phys. Rev. B
, vol.79
, pp. 012411
-
-
Yeh, S.S.1
Lin, J.J.2
-
24
-
-
0035844574
-
-
10.1103/PhysRevLett.86.5562
-
X. X. Zhang, C. Wan, H. Liu, Z. Q. Li, P. Sheng, and J. J. Lin, Phys. Rev. Lett. 86, 5562 (2001). 10.1103/PhysRevLett.86.5562
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 5562
-
-
Zhang, X.X.1
Wan, C.2
Liu, H.3
Li, Z.Q.4
Sheng, P.5
Lin, J.J.6
-
30
-
-
77957365108
-
-
Alternatively, for spherical grains of radius a separated by insulating barriers with average thickness s, the charging energy is predicted to be Ec =2s e2 / εr ε0 a (a/2+s ), where ε0 is the permittivity of vacuum and εr is the dielectric constant of the insulating barrier (Refs.).
-
Alternatively, for spherical grains of radius a separated by insulating barriers with average thickness s, the charging energy is predicted to be E c = 2 s e 2 / ε r ε 0 a (a / 2 + s), where ε 0 is the permittivity of vacuum and ε r is the dielectric constant of the insulating barrier (Refs.)
-
-
-
-
31
-
-
0009793546
-
-
-.
-
Taking ε r ≈ 13 for Cr 2 O 3 [P. H. Fang and W. S. Brower, Phys. Rev. 129, 1561 (1963)] 10.1103/PhysRev.129.1561
-
(1963)
Phys. Rev.
, vol.129
, pp. 1561
-
-
Fang, P.H.1
Brower, W.S.2
-
32
-
-
65149098854
-
-
10.1088/1367-2630/11/3/033032
-
M. Huth, D. Klingenberger, Ch. Grimm, F. Porrati, and R. Sachser, New J. Phys. 11, 033032 (2009). 10.1088/1367-2630/11/3/033032
-
(2009)
New J. Phys.
, vol.11
, pp. 033032
-
-
Huth, M.1
Klingenberger, D.2
Grimm, Ch.3
Porrati, F.4
Sachser, R.5
-
33
-
-
66849126077
-
-
10.1103/PhysRevB.79.201203
-
P. Achatz, W. Gajewski, E. Bustarret, C. Marcenat, R. Piquerel, C. Chapelier, T. Dubouchet, O. A. Williams, K. Haenen, J. A. Garrido, and M. Stutzmann, Phys. Rev. B 79, 201203 (R), (2009). 10.1103/PhysRevB.79.201203
-
(2009)
Phys. Rev. B
, vol.79
, pp. 201203
-
-
Achatz, P.1
Gajewski, W.2
Bustarret, E.3
Marcenat, C.4
Piquerel, R.5
Chapelier, C.6
Dubouchet, T.7
Williams, O.A.8
Haenen, K.9
Garrido, J.A.10
Stutzmann, M.11
-
34
-
-
77957350089
-
-
Using D=1.4 cm2 /s, we obtain the thermal diffusion length LT =√ Dh/ kB T ≈33/√T nm in the sample A. Therefore, in terms of the EEI effect, the Cr electrode should be 3D at temperatures above ≈1 K. If we insisted in plotting resistance versus temperature for the sample B (D), a dependence R∞lnT is observed in essentially the same temperature interval shown in Fig. [Fig. ]. However, the measured resistance rise is more than a factor of 3 as could be expected from the 2D EEI and WL effects, taking the sheet resistance listed in Table into calculation.
-
Using D = 1.4 cm 2 / s, we obtain the thermal diffusion length L T = √ D h/ k B T ≈ 33 / √ T nm in the sample A. Therefore, in terms of the EEI effect, the Cr electrode should be 3D at temperatures above ≈ 1 K. If we insisted in plotting resistance versus temperature for the sample B (D), a dependence R ∞ ln T is observed in essentially the same temperature interval shown in Fig. [Fig.]. However, the measured resistance rise is more than a factor of 3 as could be expected from the 2D EEI and WL effects, taking the sheet resistance listed in Table into calculation.
-
-
-
-
36
-
-
0002901737
-
-
Previously, a G (V) ∞√V dependence had been observed in granular Al films, 10.1103/PhysRevLett.46.137. However, the authors interpreted their results in terms of then available Altshuler-Aronov theory of weakly disordered homogeneous conductors (Ref.).
-
Previously, a G (V) ∞ √ V dependence had been observed in granular Al films, R. C. Dynes and J. P. Garno, Phys. Rev. Lett. 46, 137 (1981) 10.1103/PhysRevLett.46.137
-
(1981)
Phys. Rev. Lett.
, vol.46
, pp. 137
-
-
Dynes, R.C.1
Garno, J.P.2
|