메뉴 건너뛰기




Volumn 59, Issue 7, 2010, Pages 963-984

Optimization based on quasi-monte carlo sampling to design state estimators for non-linear systems

Author keywords

Constrained optimization; Input to state stability; Low discrepancy sequences; Non linear programming; Quasi monte carlo methods; Ridge computational models; State estimation

Indexed keywords


EID: 77956644613     PISSN: 02331934     EISSN: 10294945     Source Type: Journal    
DOI: 10.1080/02331930902863665     Document Type: Article
Times cited : (26)

References (44)
  • 1
    • 33846098198 scopus 로고    scopus 로고
    • Design of asymptotic estimators: An approach based on neural networks and nonlinear programming
    • A. Alessandri, C. Cervellera, and M. Sanguineti, Design of asymptotic estimators: An approach based on neural networks and nonlinear programming, IEEE Trans. Neural Networks 18 (2007), p. 96.
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 96
    • Alessandri, A.1    Cervellera, C.2    Sanguineti, M.3
  • 2
    • 36049025849 scopus 로고    scopus 로고
    • Functional optimal estimation problems and their solution by nonlinear approximation schemes
    • A. Alessandri, C. Cervellera, and M. Sanguineti, Functional optimal estimation problems and their solution by nonlinear approximation schemes, J. Optim. Theory Appl. 134 (2007), pp. 445-466.
    • (2007) J. Optim. Theory Appl. , vol.134 , pp. 445-466
    • Alessandri, A.1    Cervellera, C.2    Sanguineti, M.3
  • 4
    • 57649217589 scopus 로고    scopus 로고
    • The extended Ritz method for functional optimization: Overview and applications to single-person and team optimal decision problems
    • M. Baglietto, M. Sanguineti, and R. Zoppoli, The extended Ritz method for functional optimization: Overview and applications to single-person and team optimal decision problems, Optim. Methods Software 24 (2009), pp. 15-43.
    • (2009) Optim. Methods Software , vol.24 , pp. 15-43
    • Baglietto, M.1    Sanguineti, M.2    Zoppoli, R.3
  • 5
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory 39 (1993), pp. 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 6
    • 0003713964 scopus 로고    scopus 로고
    • Athena Scientific, Belmont, MA, (2nd Printing)
    • C. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 2003 (2nd Printing).
    • (2003) Nonlinear Programming
    • Bertsekas, C.1
  • 7
    • 31144463326 scopus 로고    scopus 로고
    • Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization
    • C. Cervellera, V. Chen, and A. Wen, Optimization of a large-scale water reservoir network by stochastic dynamic programming with efficient state space discretization, European J. Oper. Res. 171 (2006), pp. 1139-1151.
    • (2006) European J. Oper. Res. , vol.171 , pp. 1139-1151
    • Cervellera, C.1    Chen, V.2    Wen, A.3
  • 8
    • 2542562008 scopus 로고    scopus 로고
    • Deterministic design for neural network learning: An approach based on discrepancy
    • C. Cervellera and M. Muselli, Deterministic design for neural network learning: An approach based on discrepancy, IEEE Trans. Neural Networks 15 (2004), pp. 533-544.
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 533-544
    • Cervellera, C.1    Muselli, M.2
  • 9
    • 36148965498 scopus 로고    scopus 로고
    • Efficient sampling in approximate dynamic programming algorithms
    • C. Cervellera and M. Muselli, Efficient sampling in approximate dynamic programming algorithms, Computational Optim. Appl. 38 (2007), pp. 417-443.
    • (2007) Computational Optim. Appl. , vol.38 , pp. 417-443
    • Cervellera, C.1    Muselli, M.2
  • 13
    • 0028465219 scopus 로고
    • Observability and observers for non-linear systems
    • J.P. Gauthier and I.A.K. Kupka, Observability and observers for non-linear systems, SIAM J. Control Optim. 32 (1994), pp. 975-994.
    • (1994) SIAM J. Control Optim. , vol.32 , pp. 975-994
    • Gauthier, J.P.1    Kupka, I.A.K.2
  • 19
    • 0034325792 scopus 로고    scopus 로고
    • Computation of Lyapunov functions for smooth nonlinear systems using convex optimization
    • T. Johansen, Computation of Lyapunov functions for smooth nonlinear systems using convex optimization, Automatica 36 (2000), pp. 1617-1626.
    • (2000) Automatica , vol.36 , pp. 1617-1626
    • Johansen, T.1
  • 21
    • 0004178386 scopus 로고    scopus 로고
    • 3rd ed., Prentice Hall, Upper Saddle River, NJ
    • H. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2002.
    • (2002) Nonlinear Systems
    • Khalil, H.1
  • 22
    • 0016570538 scopus 로고
    • Exponential observers for nonlinear dynamic systems
    • S.R. Kou, D.L. Elliott, and T.J. Tarn, Exponential observers for nonlinear dynamic systems, Inform. Control 29 (1975), pp. 204-216.
    • (1975) Inform. Control , vol.29 , pp. 204-216
    • Kou, S.R.1    Elliott, D.L.2    Tarn, T.J.3
  • 23
    • 0142224770 scopus 로고
    • Linearization by output injection and nonlinear observers
    • A.J. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Syst. Control Lett. 3 (1983), pp. 47-52.
    • (1983) Syst. Control Lett. , vol.3 , pp. 47-52
    • Krener, A.J.1    Isidori, A.2
  • 24
    • 0022028028 scopus 로고
    • Nonlinear observer with linearizable error dynamics
    • A.J. Krener and W. Respondek, Nonlinear observer with linearizable error dynamics, SIAM J. Control Optim. 23 (1985), pp. 197-216.
    • (1985) SIAM J. Control Optim. , vol.23 , pp. 197-216
    • Krener, A.J.1    Respondek, W.2
  • 25
    • 0035443484 scopus 로고    scopus 로고
    • Bounds on rates of variable-basis and neural-network approximation
    • V. Kůrková and M. Sanguineti, Bounds on rates of variable-basis and neural-network approximation, IEEE Trans. Inform. Theory 47 (2001), pp. 2659-2665.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 2659-2665
    • Kůrková, V.1    Sanguineti, M.2
  • 26
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst case errors in linear and neural network approximation
    • V. Kůrková and M. Sanguineti, Comparison of worst case errors in linear and neural network approximation, IEEE Trans. Inform. Theory 48 (2002), pp. 264-275.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 27
    • 57349097663 scopus 로고    scopus 로고
    • Geometric upper bounds on rates of variable-basis approximation
    • V. Kůrková and M. Sanguineti, Geometric upper bounds on rates of variable-basis approximation, IEEE Trans. Inform. Theory 54 (2008), pp. 5681-5688.
    • (2008) IEEE Trans. Inform. Theory , vol.54 , pp. 5681-5688
    • Kůrková, V.1    Sanguineti, M.2
  • 28
    • 84972564972 scopus 로고
    • Optimal reconstruction of a function from its projections
    • B.F. Logan and L.A. Shepp, Optimal reconstruction of a function from its projections, Duke Math. J. 42 (1975), pp. 645-659.
    • (1975) Duke Math. J. , vol.42 , pp. 645-659
    • Logan, B.F.1    Shepp, L.A.2
  • 29
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • E. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963), pp. 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 30
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Y. Makovoz, Uniform approximation by neural networks, J. Approx. Theory 95 (1998), pp. 215-228.
    • (1998) J. Approx. Theory , vol.95 , pp. 215-228
    • Makovoz, Y.1
  • 31
    • 0000194429 scopus 로고
    • Degree of approximation by neural and translation networks with a single hidden layer
    • H.N. Mhaskar and C.A. Micchelli, Degree of approximation by neural and translation networks with a single hidden layer, Adv. Appl. Math. 16 (1995), pp. 151-183.
    • (1995) Adv. Appl. Math. , vol.16 , pp. 151-183
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 33
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999), pp. 143-195.
    • (1999) Acta Numer , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 34
    • 57649209233 scopus 로고    scopus 로고
    • Universal approximation by ridge computational models: A survey
    • M. Sanguineti, Universal approximation by ridge computational models: A survey, Open Appl. Math. J. 2 (2008), pp. 31-58.
    • (2008) Open Appl. Math. J. , vol.2 , pp. 31-58
    • Sanguineti, M.1
  • 35
    • 27944463283 scopus 로고    scopus 로고
    • Neural networks and management science/operations research: A bibliographic essay
    • Marcel Dekker, Inc., New York
    • R. Sharda and R. Rampal, Neural networks and management science/operations research: A bibliographic essay, in Encyclopedia of Library and Information Science, Vol. 61, Marcel Dekker, Inc., New York, 1998, pp. 247-259.
    • (1998) Encyclopedia of Library and Information Science , vol.61 , pp. 247-259
    • Sharda, R.1    Rampal, R.2
  • 36
    • 0002381070 scopus 로고    scopus 로고
    • Neural networks for combinatorial optimization: A review of more than a decade of research
    • K.A. Smith, Neural networks for combinatorial optimization: A review of more than a decade of research, INFORMS J. Comput. 11 (1999), pp. 15-34.
    • (1999) INFORMS J. Comput. , vol.11 , pp. 15-34
    • Smith, K.A.1
  • 37
    • 0001352321 scopus 로고
    • The distribution of points in a cube and the approximate evaluation of integrals
    • I.M. Sobol', The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), pp. 784-802.
    • (1967) Zh. Vychisl. Mat. I Mat. Fiz. , vol.7 , pp. 784-802
    • Sobol, I.M.1
  • 38
    • 0029288045 scopus 로고
    • On characterizations of the input-to-state stability property
    • E. Sontag and Y. Wang, On characterizations of the input-to-state stability property, Syst. Control Lett. 24 (1995), pp. 351-359.
    • (1995) Syst. Control Lett. , vol.24 , pp. 351-359
    • Sontag, E.1    Wang, Y.2
  • 39
    • 0024647058 scopus 로고
    • Smooth stabilization implies coprime factorization
    • E.D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control 34 (1989), pp. 435-443.
    • (1989) IEEE Trans. Automat. Control , vol.34 , pp. 435-443
    • Sontag, E.D.1
  • 41
    • 0026897370 scopus 로고
    • Uniqueness of the weights for minimal feedforward nets with a given input-output map
    • H.J. Sussmann, Uniqueness of the weights for minimal feedforward nets with a given input-output map, Neural Networks 5 (1992), pp. 589-593.
    • (1992) Neural Networks , vol.5 , pp. 589-593
    • Sussmann, H.J.1
  • 42
    • 0015600637 scopus 로고
    • Observing the state of non-linear dynamic systems
    • F.E. Thau, Observing the state of non-linear dynamic systems, Int. J. Control 17 (1973), pp. 471-479.
    • (1973) Int. J. Control , vol.17 , pp. 471-479
    • Thau, F.E.1
  • 43
    • 0023288979 scopus 로고
    • State observation of nonlinear uncertain dynamical systems
    • B.L. Walcott and S.H. Zak, State observation of nonlinear uncertain dynamical systems, IEEE Trans. Automat. Control 32 (1987), pp. 166-170.
    • (1987) IEEE Trans. Automat. Control , vol.32 , pp. 166-170
    • Walcott, B.L.1    Zak, S.H.2
  • 44
    • 0032074712 scopus 로고    scopus 로고
    • Stable neural controllers for nonlinear dynamic systems
    • S. Yu and A.M. Annaswamy, Stable neural controllers for nonlinear dynamic systems, Automatica 34 (1998), pp. 641-650.
    • (1998) Automatica , vol.34 , pp. 641-650
    • Yu, S.1    Annaswamy, A.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.