메뉴 건너뛰기




Volumn 38, Issue 1, 2011, Pages 386-393

A Hybrid Higher Order Neural Classifier for handling classification problems

Author keywords

Classification problems; Feature subset selection; High order unit; Higher order neural network (HONN); Model selection

Indexed keywords

CLASSIFICATION PROBLEMS; FEATURE SUBSET SELECTION; HIGH-ORDER; HIGHER ORDER NEURAL NETWORK; MODEL SELECTION;

EID: 77956619561     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.06.077     Document Type: Article
Times cited : (53)

References (48)
  • 1
    • 0032347323 scopus 로고    scopus 로고
    • Achieving superior generalization with a high order neural network
    • A. Abdelbar Achieving superior generalization with a high order neural network Neural Computing and Applications 7 2 1998 141 146
    • (1998) Neural Computing and Applications , vol.7 , Issue.2 , pp. 141-146
    • Abdelbar, A.1
  • 2
    • 15944408017 scopus 로고    scopus 로고
    • Modified high-order neural network for invariant pattern recognition
    • E. Artyomov, and O. Yadid-Pecht Modified high-order neural network for invariant pattern recognition Pattern Recognition Letters 26 6 2005 843 851
    • (2005) Pattern Recognition Letters , vol.26 , Issue.6 , pp. 843-851
    • Artyomov, E.1    Yadid-Pecht, O.2
  • 3
    • 60249090307 scopus 로고    scopus 로고
    • Differential evolution trained wavelet neural networks: Application to bankruptcy prediction in banks
    • N. Chauhana, V. Ravi, and D.K.V. Chandra Differential evolution trained wavelet neural networks: Application to bankruptcy prediction in banks International Journal of Expert System with Application 36 4 2009 7659 7665
    • (2009) International Journal of Expert System with Application , vol.36 , Issue.4 , pp. 7659-7665
    • Chauhana, N.1    Ravi, V.2    Chandra, D.K.V.3
  • 5
    • 0029518002 scopus 로고
    • The estimation theory and optimization algorithm for the number of hidden units in the higher-order feedforward neural network
    • Chow, J. L., & Yu, T. W. S. Y. (1995). The estimation theory and optimization algorithm for the number of hidden units in the higher-order feedforward neural network. In Proceedings, IEEE international conference on neural networks (Vol. 3, pp. 1229-1233).
    • (1995) Proceedings, IEEE International Conference on Neural Networks , vol.3 , pp. 1229-1233
    • Chow, J.L.1    Yu, T.W.S.Y.2
  • 8
    • 84900275413 scopus 로고    scopus 로고
    • Application of higher-order neural networks to financial time series prediction
    • J. Fulcher, M. Zhang, and S. Xu Application of higher-order neural networks to financial time series prediction J.B. Kamruzzaman, Artificial neural networks in finance and manufacturing 2006 Idea Group Inc. (IGI) New York 80 108
    • (2006) Artificial Neural Networks in Finance and Manufacturing , pp. 80-108
    • Fulcher, J.1    Zhang, M.2    Xu, S.3
  • 9
    • 56949095848 scopus 로고    scopus 로고
    • A fast nearest neighbor classifier based on self-organizing incremental neural network
    • S. Furao, and O. Hasegawa A fast nearest neighbor classifier based on self-organizing incremental neural network Neural Networks 21 10 2008 1537 1547
    • (2008) Neural Networks , vol.21 , Issue.10 , pp. 1537-1547
    • Furao, S.1    Hasegawa, O.2
  • 10
    • 38049062686 scopus 로고    scopus 로고
    • Dynamic ridge polynomial neural networks in exchange rates time series forecasting
    • R. Ghazali, A.J. Hussain, D. Al-jumeily, and M. Merabti Dynamic ridge polynomial neural networks in exchange rates time series forecasting B. Beliczynski, A. Dzielinski, M. Iwanowski, B. Ribeiro, Adaptive and natural computing algorithms 2007 Springer Berlin/Heidelberg 123 132
    • (2007) Adaptive and Natural Computing Algorithms , pp. 123-132
    • Ghazali, R.1    Hussain, A.J.2    Al-Jumeily, D.3    Merabti, M.4
  • 11
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanisms, and architectures
    • S. Grossberg Nonlinear neural networks: principles, mechanisms, and architectures Neural Networks 1 1988 17 62
    • (1988) Neural Networks , vol.1 , pp. 17-62
    • Grossberg, S.1
  • 13
    • 0032655155 scopus 로고    scopus 로고
    • Improvement on higher-order neural networks for invariant object recognition
    • Z. He, and M.Y. Siyal Improvement on higher-order neural networks for invariant object recognition Neural Processing Letters 10 1 1999 49 55 ISSN: 1370-4621 (11 ref.)
    • (1999) Neural Processing Letters , vol.10 , Issue.1 , pp. 49-55
    • He, Z.1    Siyal, M.Y.2
  • 15
    • 84858645944 scopus 로고    scopus 로고
    • A novel recurrent polynomial neural network for financial time series prediction
    • Zhang, M. (Ed.) Idea Group Inc. (IGI)
    • Hussain, A., & Liatsis, P. (2008). A novel recurrent polynomial neural network for financial time series prediction. In Zhang, M. (Ed.), Higher order neural networks for economics and business (pp. 190- 211). Idea Group Inc. (IGI).
    • (2008) Higher Order Neural Networks for Economics and Business , pp. 190-211
    • Hussain, A.1    Liatsis, P.2
  • 18
    • 0036604998 scopus 로고    scopus 로고
    • On a higher-order neural network for distortion invariant pattern recognition
    • T. Kaita, S. Tomita, and J. Yamanaka On a higher-order neural network for distortion invariant pattern recognition Pattern Recognition Letters 23 8 2002 977 984
    • (2002) Pattern Recognition Letters , vol.23 , Issue.8 , pp. 977-984
    • Kaita, T.1    Tomita, S.2    Yamanaka, J.3
  • 23
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • R.P. Lippmann Pattern classification using neural networks Communications Magazine, IEEE 27 11 1989
    • (1989) Communications Magazine, IEEE , vol.27 , Issue.11
    • Lippmann, R.P.1
  • 24
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody, and C. Darken Fast learning in networks of locally-tuned processing units Neural Computation 1 1989 281 294
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 25
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • G. Ou, and Y.L. Murphey Multi-class pattern classification using neural networks Pattern Recognition 40 1 2007 4 18
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 26
  • 27
    • 33847327937 scopus 로고    scopus 로고
    • Handling of incomplete data sets using ICA and SOM in data mining
    • H. Peng, and S. Zhu Handling of incomplete data sets using ICA and SOM in data mining Neural Computing and Applications 2007 167 172
    • (2007) Neural Computing and Applications , pp. 167-172
    • Peng, H.1    Zhu, S.2
  • 30
    • 61849131186 scopus 로고    scopus 로고
    • A neural network-based multi-agent classifier system
    • A. Quteishat, C.P. Lim, J. Tweedale, and L.C. Jain A neural network-based multi-agent classifier system Neurocomputing 72 7-9 2009 1639 1647
    • (2009) Neurocomputing , vol.72 , Issue.79 , pp. 1639-1647
    • Quteishat, A.1    Lim, C.P.2    Tweedale, J.3    Jain, L.C.4
  • 31
    • 36849043705 scopus 로고    scopus 로고
    • Multiorder neurons for evolutionary higher-order clustering and growth
    • K. Ramanathan, and S.U. Guan Multiorder neurons for evolutionary higher-order clustering and growth Neural Computation 19 12 2007 3369 3391
    • (2007) Neural Computation , vol.19 , Issue.12 , pp. 3369-3391
    • Ramanathan, K.1    Guan, S.U.2
  • 32
  • 33
    • 34548180859 scopus 로고    scopus 로고
    • Evolution of neural networks for classification and regression
    • M. Rocha, P. Cortez, and J. Neves Evolution of neural networks for classification and regression Neurocomputing 70 16-18 2007 2809 2816
    • (2007) Neurocomputing , vol.70 , Issue.1618 , pp. 2809-2816
    • Rocha, M.1    Cortez, P.2    Neves, J.3
  • 35
    • 0022471098 scopus 로고
    • Learning representation by back-propagation errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning representation by back-propagation errors Nature 323 1986 533 536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 37
    • 37649019425 scopus 로고    scopus 로고
    • Feature subset selection based on fuzzy entropy measures for handling classification problems
    • J.D. Shie, and S.M. Chen Feature subset selection based on fuzzy entropy measures for handling classification problems Journal of Applied Intelligence 28 2008 69 82
    • (2008) Journal of Applied Intelligence , vol.28 , pp. 69-82
    • Shie, J.D.1    Chen, S.M.2
  • 38
    • 0026375443 scopus 로고
    • The pi-sigma networks: An efficient higher-order neural network for pattern classification and function approximation
    • Shin, Y., & Ghosh, J. (1991). The pi-sigma networks: An efficient higher-order neural network for pattern classification and function approximation. In Proceedings of international joint conference on neural networks (Vol. 1, pp. 13-18).
    • (1991) Proceedings of International Joint Conference on Neural Networks , vol.1 , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 40
    • 0025559966 scopus 로고
    • Connectivity strategies for higher-order neural networks applied to pattern recognition
    • Spirkovska, L., & Reid, M. B. (1990). Connectivity strategies for higher-order neural networks applied to pattern recognition. In International joint conference on neural network (Vol. 1, pp. 21-26).
    • (1990) International Joint Conference on Neural Network , vol.1 , pp. 21-26
    • Spirkovska, L.1    Reid, M.B.2
  • 42
    • 0141904587 scopus 로고    scopus 로고
    • Application of self-organising maps for data mining with incomplete data sets
    • S.H. Wang Application of self-organising maps for data mining with incomplete data sets Neural Computing and Applications 2003 42 48
    • (2003) Neural Computing and Applications , pp. 42-48
    • Wang, S.H.1
  • 44
    • 70449452063 scopus 로고    scopus 로고
    • Adaptive higher order neural network models and their applications in business
    • S. Xu Adaptive higher order neural network models and their applications in business M. Zhang, Artificial higher order neural networks for economics and business 2008 IGI Global 314 329
    • (2008) Artificial Higher Order Neural Networks for Economics and Business , pp. 314-329
    • Xu, S.1
  • 47
    • 0036129962 scopus 로고    scopus 로고
    • Neuron-adaptive higher order neural-network models for automated financial data modeling
    • M. Zhang, S. Xu, and J. Fulcher Neuron-adaptive higher order neural-network models for automated financial data modeling IEEE Transactions on Neural Networks 13 1 2002 188 204
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 188-204
    • Zhang, M.1    Xu, S.2    Fulcher, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.