메뉴 건너뛰기




Volumn , Issue , 2008, Pages 190-211

A novel recurrent polynomial neural network for financial time series prediction

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84858645944     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-59904-897-0.ch009     Document Type: Chapter
Times cited : (19)

References (38)
  • 2
    • 0023579544 scopus 로고
    • Learning on a general network
    • In D. Anderson, (Ed.), New York: American Institute of Physics
    • Atiya, A. (1988). Learning on a general network. In D. Anderson, (Ed.) Neural information processing systems (NIPS). New York: American Institute of Physics.
    • (1988) Neural Information Processing Systems (NIPS)
    • Atiya, A.1
  • 3
    • 84877479752 scopus 로고
    • Properties of neural networks with applications to modeling non-linear dynamical systems
    • Billings S.A, Jamaluddin, H. B., & Chen, S. (1992). Properties of neural networks with applications to modeling non-linear dynamical systems. International Journal of Control, 55, 193-224.
    • (1992) International Journal of Control , vol.55 , pp. 193-224
    • Billings, S.A.1    Jamaluddin, H.B.2    Chen, S.3
  • 5
    • 33748942805 scopus 로고    scopus 로고
    • Neural network approach to forecasting of quasiperiodic financial time series
    • Bodyanskiy, Y., & Popov, S. (2006). Neural network approach to forecasting of quasiperiodic financial time series. European Journal of Operational Research, 175(3), 1357-1366.
    • (2006) European Journal of Operational Research , vol.175 , Issue.3 , pp. 1357-1366
    • Bodyanskiy, Y.1    Popov, S.2
  • 8
    • 25444478301 scopus 로고    scopus 로고
    • Performance evaluation of neural network architectures: The case of predicting foreign exchange correlations
    • Chen, A.S., & Leung, M.T. (2005). Performance evaluation of neural network architectures: The case of predicting foreign exchange correlations. Journal of Forecasting, 24(6), 403-420.
    • (2005) Journal of Forecasting , vol.24 , Issue.6 , pp. 403-420
    • Chen, A.S.1    Leung, M.T.2
  • 10
    • 0035533512 scopus 로고    scopus 로고
    • Financial forecasting using support vector machines
    • Coa, L., & Tay, F.E.H. (2001). Financial forecasting using support vector machines. Neural Computing and Applications, 10, 184-192.
    • (2001) Neural Computing and Applications , vol.10 , pp. 184-192
    • Coa, L.1    Tay, F.E.H.2
  • 11
    • 0442319687 scopus 로고    scopus 로고
    • Modelling and trading the eur/usd exchange rate: Do neural network models perform better?
    • Dunis, C. L. & Williams, M. (2002). Modelling and trading the EUR/USD exchange rate: Do neural network models perform better? Derivatives Use, Trading and Regulation, 8(3), 211-239.
    • (2002) Derivatives Use, Trading and Regulation , vol.8 , Issue.3 , pp. 211-239
    • Dunis, C.L.1    Williams, M.2
  • 12
    • 0040377513 scopus 로고    scopus 로고
    • An analysis of the applications of neural networks in finance
    • Fadlalla, A., & Lin, C.H. (2001). An analysis of the applications of neural networks in finance. Interfaces, 31(4), 112-122.
    • (2001) Interfaces , vol.31 , Issue.4 , pp. 112-122
    • Fadlalla, A.1    Lin, C.H.2
  • 13
    • 0028428285 scopus 로고
    • A polynomial neural network for predicting temperature distributions
    • Fulcher, G.E., & Brown, D.E. (1994). A polynomial neural network for predicting temperature distributions. IEEE Transactions on Neural Networks, 5(3), 372-379.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.3 , pp. 372-379
    • Fulcher, G.E.1    Brown, D.E.2
  • 14
    • 0001666851 scopus 로고
    • Efficient higher-order neural networks for classification and function approximation
    • Ghosh, J., & Shin, Y. (1992). Efficient higher-order neural networks for classification and function approximation. International Journal of Neural Systems, 3(4), 323-350.
    • (1992) International Journal of Neural Systems , vol.3 , Issue.4 , pp. 323-350
    • Ghosh, J.1    Shin, Y.2
  • 15
    • 4444303978 scopus 로고    scopus 로고
    • Using neural networks for forecasting volatility of S&P 500 index future prices
    • Hamid, S.A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index future prices. Journal of Business Research, 57(10), 1116-1125.
    • (2004) Journal of Business Research , vol.57 , Issue.10 , pp. 1116-1125
    • Hamid, S.A.1    Iqbal, Z.2
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 22
    • 0032679273 scopus 로고    scopus 로고
    • A dynamic regularised radial basis function network for nonlinear, nonstationary time series prediction
    • Lee, P. and Haykin, S. (1999). A dynamic regularised radial basis function network for nonlinear, nonstationary time series prediction. IEEE Transactions on Signal processing, 47(9), 2503-2521.
    • (1999) IEEE Transactions on Signal Processing , vol.47 , Issue.9 , pp. 2503-2521
    • Lee, P.1    Haykin, S.2
  • 24
    • 0036855813 scopus 로고    scopus 로고
    • Forecasting daily foreign exchange rates using genetically optimized neural networks
    • Nag, A.K., & Mitra, A. (2002). Forecasting daily foreign exchange rates using genetically optimized neural networks. Journal of Forecasting, 21(7), 501-511.
    • (2002) Journal of Forecasting , vol.21 , Issue.7 , pp. 501-511
    • Nag, A.K.1    Mitra, A.2
  • 25
    • 33750987935 scopus 로고    scopus 로고
    • Detecting novelties in time series through neural networks forecasting with robust confidence intervals
    • Oliveira, A.L.I., & Meira, S.R.L. (2006). Detecting novelties in time series through neural networks forecasting with robust confidence intervals. Neurocomputing, 70(1-3), 79-92.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 79-92
    • Oliveira, A.L.I.1    Meira, S.R.L.2
  • 29
    • 33744809015 scopus 로고    scopus 로고
    • Neural networks for the prediction of the stock market
    • Rihani, V., & Garg, S.K. (2006). Neural networks for the prediction of the stock market. IETE Technical Review, 23(2), 113-117.
    • (2006) IETE Technical Review , vol.23 , Issue.2 , pp. 113-117
    • Rihani, V.1    Garg, S.K.2
  • 30
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
    • Saad, E.W., Prokhorov, D.V., & Wunsch, D.C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, 9(6), 1456-1470.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1456-1470
    • Saad, E.W.1    Prokhorov, D.V.2    Wunsch, D.C.3
  • 31
    • 0026375443 scopus 로고
    • The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation
    • Shin, Y., & Ghosh, J. (1991). The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation. IEEE Transactions on Neural Networks, 1(1), 13-18.
    • (1991) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 33
    • 0025013851 scopus 로고
    • Time series: Information and prediction
    • Teodorescu, D. (1990). Time series: Information and prediction. Biological Cybernetics, 63(6), 477-485.
    • (1990) Biological Cybernetics , vol.63 , Issue.6 , pp. 477-485
    • Teodorescu, D.1
  • 34
    • 0030291725 scopus 로고    scopus 로고
    • Forecasting foreign exchange rates using recurrent neural networks
    • Tenti, P. (1996). Forecasting foreign exchange rates using recurrent neural networks. Applied Artificial Intelligence, 10(6), 567-581.
    • (1996) Applied Artificial Intelligence , vol.10 , Issue.6 , pp. 567-581
    • Tenti, P.1
  • 35
    • 84887252594 scopus 로고
    • Support vector method for function approximation, regression and signal processing
    • Vapnik, V.N., Golowish, S.E., & Smola, A.J. (1991). Support vector method for function approximation, regression and signal processing. Advances in Neural Information Systems, 9, 281-287.
    • (1991) Advances in Neural Information Systems , vol.9 , pp. 281-287
    • Vapnik, V.N.1    Golowish, S.E.2    Smola, A.J.3
  • 36
    • 2042515742 scopus 로고    scopus 로고
    • Neural networks in business: A survey of applications (1992-1998)
    • Vellido, A., Lisboa, P.J.G., & Vaughan, J. (1999). Neural networks in business: A survey of applications (1992-1998). Expert Systems with Applications, 17(1), 51-70.
    • (1999) Expert Systems with Applications , vol.17 , Issue.1 , pp. 51-70
    • Vellido, A.1    Lisboa, P.J.G.2    Vaughan, J.3
  • 37
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R.J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 38
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent neural networks
    • In Chauvin, Y., & Rumelhart, D.E. (Eds.), Lawrence Erlbaurn Association
    • Williams, R.J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent neural networks. In Chauvin, Y., & Rumelhart, D.E. (Eds.), Backpropagation theory, architecture and applications (pp. 433-486). Lawrence Erlbaurn Association.
    • (1995) Backpropagation Theory, Architecture and Applications , pp. 433-486
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.