-
2
-
-
0023579544
-
Learning on a general network
-
In D. Anderson, (Ed.), New York: American Institute of Physics
-
Atiya, A. (1988). Learning on a general network. In D. Anderson, (Ed.) Neural information processing systems (NIPS). New York: American Institute of Physics.
-
(1988)
Neural Information Processing Systems (NIPS)
-
-
Atiya, A.1
-
3
-
-
84877479752
-
Properties of neural networks with applications to modeling non-linear dynamical systems
-
Billings S.A, Jamaluddin, H. B., & Chen, S. (1992). Properties of neural networks with applications to modeling non-linear dynamical systems. International Journal of Control, 55, 193-224.
-
(1992)
International Journal of Control
, vol.55
, pp. 193-224
-
-
Billings, S.A.1
Jamaluddin, H.B.2
Chen, S.3
-
5
-
-
33748942805
-
Neural network approach to forecasting of quasiperiodic financial time series
-
Bodyanskiy, Y., & Popov, S. (2006). Neural network approach to forecasting of quasiperiodic financial time series. European Journal of Operational Research, 175(3), 1357-1366.
-
(2006)
European Journal of Operational Research
, vol.175
, Issue.3
, pp. 1357-1366
-
-
Bodyanskiy, Y.1
Popov, S.2
-
8
-
-
25444478301
-
Performance evaluation of neural network architectures: The case of predicting foreign exchange correlations
-
Chen, A.S., & Leung, M.T. (2005). Performance evaluation of neural network architectures: The case of predicting foreign exchange correlations. Journal of Forecasting, 24(6), 403-420.
-
(2005)
Journal of Forecasting
, vol.24
, Issue.6
, pp. 403-420
-
-
Chen, A.S.1
Leung, M.T.2
-
10
-
-
0035533512
-
Financial forecasting using support vector machines
-
Coa, L., & Tay, F.E.H. (2001). Financial forecasting using support vector machines. Neural Computing and Applications, 10, 184-192.
-
(2001)
Neural Computing and Applications
, vol.10
, pp. 184-192
-
-
Coa, L.1
Tay, F.E.H.2
-
11
-
-
0442319687
-
Modelling and trading the eur/usd exchange rate: Do neural network models perform better?
-
Dunis, C. L. & Williams, M. (2002). Modelling and trading the EUR/USD exchange rate: Do neural network models perform better? Derivatives Use, Trading and Regulation, 8(3), 211-239.
-
(2002)
Derivatives Use, Trading and Regulation
, vol.8
, Issue.3
, pp. 211-239
-
-
Dunis, C.L.1
Williams, M.2
-
12
-
-
0040377513
-
An analysis of the applications of neural networks in finance
-
Fadlalla, A., & Lin, C.H. (2001). An analysis of the applications of neural networks in finance. Interfaces, 31(4), 112-122.
-
(2001)
Interfaces
, vol.31
, Issue.4
, pp. 112-122
-
-
Fadlalla, A.1
Lin, C.H.2
-
13
-
-
0028428285
-
A polynomial neural network for predicting temperature distributions
-
Fulcher, G.E., & Brown, D.E. (1994). A polynomial neural network for predicting temperature distributions. IEEE Transactions on Neural Networks, 5(3), 372-379.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.3
, pp. 372-379
-
-
Fulcher, G.E.1
Brown, D.E.2
-
14
-
-
0001666851
-
Efficient higher-order neural networks for classification and function approximation
-
Ghosh, J., & Shin, Y. (1992). Efficient higher-order neural networks for classification and function approximation. International Journal of Neural Systems, 3(4), 323-350.
-
(1992)
International Journal of Neural Systems
, vol.3
, Issue.4
, pp. 323-350
-
-
Ghosh, J.1
Shin, Y.2
-
15
-
-
4444303978
-
Using neural networks for forecasting volatility of S&P 500 index future prices
-
Hamid, S.A., & Iqbal, Z. (2004). Using neural networks for forecasting volatility of S&P 500 Index future prices. Journal of Business Research, 57(10), 1116-1125.
-
(2004)
Journal of Business Research
, vol.57
, Issue.10
, pp. 1116-1125
-
-
Hamid, S.A.1
Iqbal, Z.2
-
18
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
22
-
-
0032679273
-
A dynamic regularised radial basis function network for nonlinear, nonstationary time series prediction
-
Lee, P. and Haykin, S. (1999). A dynamic regularised radial basis function network for nonlinear, nonstationary time series prediction. IEEE Transactions on Signal processing, 47(9), 2503-2521.
-
(1999)
IEEE Transactions on Signal Processing
, vol.47
, Issue.9
, pp. 2503-2521
-
-
Lee, P.1
Haykin, S.2
-
24
-
-
0036855813
-
Forecasting daily foreign exchange rates using genetically optimized neural networks
-
Nag, A.K., & Mitra, A. (2002). Forecasting daily foreign exchange rates using genetically optimized neural networks. Journal of Forecasting, 21(7), 501-511.
-
(2002)
Journal of Forecasting
, vol.21
, Issue.7
, pp. 501-511
-
-
Nag, A.K.1
Mitra, A.2
-
25
-
-
33750987935
-
Detecting novelties in time series through neural networks forecasting with robust confidence intervals
-
Oliveira, A.L.I., & Meira, S.R.L. (2006). Detecting novelties in time series through neural networks forecasting with robust confidence intervals. Neurocomputing, 70(1-3), 79-92.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 79-92
-
-
Oliveira, A.L.I.1
Meira, S.R.L.2
-
29
-
-
33744809015
-
Neural networks for the prediction of the stock market
-
Rihani, V., & Garg, S.K. (2006). Neural networks for the prediction of the stock market. IETE Technical Review, 23(2), 113-117.
-
(2006)
IETE Technical Review
, vol.23
, Issue.2
, pp. 113-117
-
-
Rihani, V.1
Garg, S.K.2
-
30
-
-
0032207527
-
Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
-
Saad, E.W., Prokhorov, D.V., & Wunsch, D.C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, 9(6), 1456-1470.
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, Issue.6
, pp. 1456-1470
-
-
Saad, E.W.1
Prokhorov, D.V.2
Wunsch, D.C.3
-
31
-
-
0026375443
-
The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation
-
Shin, Y., & Ghosh, J. (1991). The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation. IEEE Transactions on Neural Networks, 1(1), 13-18.
-
(1991)
IEEE Transactions on Neural Networks
, vol.1
, Issue.1
, pp. 13-18
-
-
Shin, Y.1
Ghosh, J.2
-
33
-
-
0025013851
-
Time series: Information and prediction
-
Teodorescu, D. (1990). Time series: Information and prediction. Biological Cybernetics, 63(6), 477-485.
-
(1990)
Biological Cybernetics
, vol.63
, Issue.6
, pp. 477-485
-
-
Teodorescu, D.1
-
34
-
-
0030291725
-
Forecasting foreign exchange rates using recurrent neural networks
-
Tenti, P. (1996). Forecasting foreign exchange rates using recurrent neural networks. Applied Artificial Intelligence, 10(6), 567-581.
-
(1996)
Applied Artificial Intelligence
, vol.10
, Issue.6
, pp. 567-581
-
-
Tenti, P.1
-
35
-
-
84887252594
-
Support vector method for function approximation, regression and signal processing
-
Vapnik, V.N., Golowish, S.E., & Smola, A.J. (1991). Support vector method for function approximation, regression and signal processing. Advances in Neural Information Systems, 9, 281-287.
-
(1991)
Advances in Neural Information Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.N.1
Golowish, S.E.2
Smola, A.J.3
-
36
-
-
2042515742
-
Neural networks in business: A survey of applications (1992-1998)
-
Vellido, A., Lisboa, P.J.G., & Vaughan, J. (1999). Neural networks in business: A survey of applications (1992-1998). Expert Systems with Applications, 17(1), 51-70.
-
(1999)
Expert Systems with Applications
, vol.17
, Issue.1
, pp. 51-70
-
-
Vellido, A.1
Lisboa, P.J.G.2
Vaughan, J.3
-
37
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams, R.J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270-280.
-
(1989)
Neural Computation
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
38
-
-
0001765578
-
Gradient-based learning algorithms for recurrent neural networks
-
In Chauvin, Y., & Rumelhart, D.E. (Eds.), Lawrence Erlbaurn Association
-
Williams, R.J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent neural networks. In Chauvin, Y., & Rumelhart, D.E. (Eds.), Backpropagation theory, architecture and applications (pp. 433-486). Lawrence Erlbaurn Association.
-
(1995)
Backpropagation Theory, Architecture and Applications
, pp. 433-486
-
-
Williams, R.J.1
Zipser, D.2
|