메뉴 건너뛰기




Volumn 6, Issue 4, 2010, Pages

Clustering for metric and nonmetric distance measures

Author keywords

means clustering; median clustering; Approximation algorithm; Bregman divergences; Itakura Saito divergence; Kullback Leibler divergence; Mahalanobis distance; Random sampling

Indexed keywords

BREGMAN DIVERGENCES; ITAKURA-SAITO DIVERGENCE; KULLBACK LEIBLER DIVERGENCE; MAHALANOBIS DISTANCES; RANDOM SAMPLING;

EID: 77956515628     PISSN: 15496325     EISSN: 15496333     Source Type: Journal    
DOI: 10.1145/1824777.1824779     Document Type: Conference Paper
Times cited : (90)

References (39)
  • 5
    • 0041062256 scopus 로고
    • The algebraic degree of geometric optimization problems
    • BAJAJ, C. L. 1988. The algebraic degree of geometric optimization problems. Discr. Comput. Geom. 3, 1, 177-191.
    • (1988) Discr. Comput. Geom. , vol.3 , Issue.1 , pp. 177-191
    • Bajaj, C.L.1
  • 8
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • BREGMAN, L. M. 1967. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200-217.
    • (1967) USSR Comput. Math. Math. Phys. , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 13
    • 77954653167 scopus 로고    scopus 로고
    • On coresets for κ-median and κ-means clustering in metric and euclidean spaces and their applications
    • CHEN, K. 2009. On coresets for κ-median and κ-means clustering in metric and Euclidean spaces and their applications. SIAM J. Comput. 39, 3, 923-947.
    • (2009) SIAM J. Comput. , vol.39 , Issue.3 , pp. 923-947
    • Chen, K.1
  • 15
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classifcation
    • DHILLON, I. S., MALLELA, S., AND KUMAR, R. 2003. A divisive information-theoretic feature clustering algorithm for text classifcation. J. Mach. Learn. Res. 3, 1265-1287.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 25
    • 0001927585 scopus 로고
    • On information and sufficiency
    • KULLBACK, S. AND LEIBLER, R. A. 1951. On information and sufficiency. Ann. Math. Statis. 22, 1, 79-86.
    • (1951) Ann. Math. Statis. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 28
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • LLOYD, S. P. 1982. Least squares quantization in PCM. IEEE Trans. Inform. Theory 28, 2, 129-137.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , Issue.2 , pp. 129-137
    • Lloyd, S.P.1
  • 29
    • 0002975203 scopus 로고
    • On the generalized distance in statistics
    • MAHALANOBIS, P. C. 1936. On the generalized distance in statistics. Proc. National Inst. Sci. India, Vol. 2, 1, 49-55.
    • (1936) Proc. National Inst. Sci. India , vol.2 , Issue.1 , pp. 49-55
    • Mahalanobis, P.C.1
  • 30
    • 0034417244 scopus 로고    scopus 로고
    • On approximate geometric κ-clustering
    • MATOUŠEK, J. 2000. On approximate geometric κ-clustering. Discr. Comput. Geom. 24, 1, 61-84.
    • (2000) Discr. Comput. Geom. , vol.24 , Issue.1 , pp. 61-84
    • Matoušek, J.1
  • 32
    • 3142729920 scopus 로고    scopus 로고
    • Optimal time bounds for approximate clustering
    • METTU, R.R. AND PLAXTON, C. G. 2004. Optimal time bounds for approximate clustering. Mach. Learn. 56, 1-3, 35-60.
    • (2004) Mach. Learn. , vol.56 , Issue.1-3 , pp. 35-60
    • Mettu, R.R.1    Plaxton, C.G.2
  • 38
    • 18444414341 scopus 로고    scopus 로고
    • Quick κ-median, κ-center, and facility location for sparse graphs
    • THORUP, M. 2005. Quick κ-median, κ-center, and facility location for sparse graphs. SIAM J. Comput. 34, 2, 405-432.
    • (2005) SIAM J. Comput. , vol.34 , Issue.2 , pp. 405-432
    • Thorup, M.1
  • 39
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • XU, R. AND WUNSCH, II, D. C. 2005. Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 3, 645-678.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • R, X.U.1    Wunsch, I.I.D.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.