메뉴 건너뛰기




Volumn 2, Issue , 2010, Pages 357-362

Real-time gender recognition for uncontrolled environment of real-life images

Author keywords

Gender recognition; Real life images; Uncontrolled environment

Indexed keywords

DATA SETS; FACE DETECTION; GENDER RECOGNITION; HUMAN SUBJECTS; REAL-LIFE IMAGES; SKIN COLOR; SURVEILLANCE VIDEO; UNCONTROLLED ENVIRONMENT; VIEWING ANGLE;

EID: 77956304463     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (24)
  • 11
    • 38149071790 scopus 로고    scopus 로고
    • Multi-view gender classification using multi-resolution local binary patterns and support vector machines
    • Lian, H.C. and Lu, B.L., 2007. Multi-View Gender Classification Using Multi-Resolution Local Binary Patterns and Support Vector Machines. International Journal of Neural Systems.
    • (2007) International Journal of Neural Systems
    • Lian, H.C.1    Lu, B.L.2
  • 15
    • 77956319346 scopus 로고    scopus 로고
    • Learning the Parts of Objects using Non-negative Matrix Factorization
    • Feb 2007
    • Nikolaus, R., 2007. Learning the Parts of Objects using Non-negative Matrix Factorization. Term Paper, Feb 2007.
    • (2007) Term Paper
    • Nikolaus, R.1
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects with nonnegative matrix factorization
    • Lee, D.D. and Seung, H.S., 1999. Learning the parts of objects with nonnegative matrix factorization. Nature.
    • (1999) Nature
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 63049138724 scopus 로고    scopus 로고
    • Improving face gender classification by adding deliberately misaligned faces to the training data
    • Mayo, M. and Zhang, E., 2008. Improving Face Gender Classification By Adding Deliberately Misaligned Faces to The Training Data. Image and Vision Computing New Zealand.
    • (2008) Image and Vision Computing New Zealand
    • Mayo, M.1    Zhang, E.2
  • 23
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E. and Singer, Y., 1999. Improved boosting algorithms using confidence-rated predictions. Machine. Learning.
    • (1999) Machine. Learning
    • Schapire, R.E.1    Singer, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.