-
1
-
-
48649104514
-
-
The third international knowledge discovery and data mining tools competition dataset kdd99-cup. In http://kdd.ics.uci.edu/databases/kddcup99/ kddcup99.html, 1999.
-
The third international knowledge discovery and data mining tools competition dataset kdd99-cup. In http://kdd.ics.uci.edu/databases/kddcup99/ kddcup99.html, 1999.
-
-
-
-
3
-
-
7444250934
-
Fast and light boosting for adaptive mining of data streams
-
H. Dai, R. Srikant, and C. Zhang, editors, Proceedings of the 8th Pacific-Asia Conference PAKDD 2004, May 26-28, 2004, Proceedings, of, Sydney, Australia, Springer Verlag
-
F. Chu and C. Zaniolo. Fast and light boosting for adaptive mining of data streams. In H. Dai, R. Srikant, and C. Zhang, editors, Proceedings of the 8th Pacific-Asia Conference (PAKDD 2004), May 26-28, 2004, Proceedings, volume 3056 of LNAI, pages 282-292, Sydney, Australia, 2004. Springer Verlag.
-
(2004)
LNAI
, vol.3056
, pp. 282-292
-
-
Chu, F.1
Zaniolo, C.2
-
4
-
-
12244286335
-
Systematic data selection to mine concept-drifting data streams
-
Seattle, WA, USA, ACM
-
W. Fan. Systematic data selection to mine concept-drifting data streams. In Proceedings of the 10th ACM SIGKDD Int. Conf. on Knowledge discovery and data mining (KDD'04),, pages 128-137, Seattle, WA, USA, 2004. ACM.
-
(2004)
Proceedings of the 10th ACM SIGKDD Int. Conf. on Knowledge discovery and data mining (KDD'04)
, pp. 128-137
-
-
Fan, W.1
-
5
-
-
33749865403
-
Ensembles for large scale data classification
-
October
-
G. Folino, C. Pizzuti, and G. Spezzano. Ensembles for large scale data classification. IEEE Transaction on Evolutionary Computation, 10(5):604-616, October 2006.
-
(2006)
IEEE Transaction on Evolutionary Computation
, vol.10
, Issue.5
, pp. 604-616
-
-
Folino, G.1
Pizzuti, C.2
Spezzano, G.3
-
6
-
-
0346457323
-
Boat - optimistic decision tree construction
-
ACM Press
-
J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. Boat - optimistic decision tree construction. In Proceedings of the ACMSIGMOD International Conference on Management of Data (SIGMOD'99), pages 169-180. ACM Press, 1999.
-
(1999)
Proceedings of the ACMSIGMOD International Conference on Management of Data (SIGMOD'99)
, pp. 169-180
-
-
Gehrke, J.1
Ganti, V.2
Ramakrishnan, R.3
Loh, W.4
-
7
-
-
48749149528
-
Generalized dimensions of strange attractors
-
P. Grassberger. Generalized dimensions of strange attractors. Physics Letters, 97A:227-230, 1983.
-
(1983)
Physics Letters
, vol.97 A
, pp. 227-230
-
-
Grassberger, P.1
-
8
-
-
1342282152
-
A fourier spectrum-based approach to represent decision trees for mining data streams in mobile environments
-
H. Kargupta and B.-H. Park. A fourier spectrum-based approach to represent decision trees for mining data streams in mobile environments. IEEE Transaction on Knowledge and Data Engineering, 16(2):216-229, 2004.
-
(2004)
IEEE Transaction on Knowledge and Data Engineering
, vol.16
, Issue.2
, pp. 216-229
-
-
Kargupta, H.1
Park, B.-H.2
-
11
-
-
0000442068
-
A fast algorithm to determine fractal dimensions by box counting
-
L. Liebovitch and T. Toth. A fast algorithm to determine fractal dimensions by box counting. Physics Letters, 141A(8):-, 1989.
-
(1989)
Physics Letters
, vol.141 A
, Issue.8
-
-
Liebovitch, L.1
Toth, T.2
-
13
-
-
48649092470
-
-
S. Parthasarathy, A. Ghoting, and M. E. Otey. A survey of distributed mining of data streams. In C. C. Aggarwal, editor, in Data Streams : Models and Algorithms, pages 289-307. Springer, 2007.
-
S. Parthasarathy, A. Ghoting, and M. E. Otey. A survey of distributed mining of data streams. In C. C. Aggarwal, editor, in Data Streams : Models and Algorithms, pages 289-307. Springer, 2007.
-
-
-
-
15
-
-
41849096368
-
Boosting classifiers for drifting concepts
-
M. Scholz and R. Klinkenberg. Boosting classifiers for drifting concepts. Intelligent Data Analysis, 11(1):3-28, 2007.
-
(2007)
Intelligent Data Analysis
, vol.11
, Issue.1
, pp. 3-28
-
-
Scholz, M.1
Klinkenberg, R.2
-
16
-
-
0035788947
-
A streaming ensemble algorithm (sea) for large-scale classification
-
San Francisco, CA, USA, August 26-29, ACM
-
W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classification. In Proceedings of the seventh ACM SIGKDD International conference on Knowledge discovery and data mining (KDD'01),, pages 377-382, San Francisco, CA, USA, August 26-29, 2001 2001. ACM.
-
(2001)
Proceedings of the seventh ACM SIGKDD International conference on Knowledge discovery and data mining (KDD'01)
, pp. 377-382
-
-
Street, W.N.1
Kim, Y.2
-
17
-
-
77952642202
-
Incremental induction of decision trees
-
P. E. Utgoff. Incremental induction of decision trees. Machine Learning, 4:161-186, 1989.
-
(1989)
Machine Learning
, vol.4
, pp. 161-186
-
-
Utgoff, P.E.1
-
18
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
Washington, DC, USA, August 24-27, ACM
-
H. Wang, W. Fan, P. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the nineth ACM SIGKDD International conference on Knowledge discovery and data mining (KDD'03), pages 226-235, Washington, DC, USA, August 24-27, 2003 2003. ACM.
-
(2003)
Proceedings of the nineth ACM SIGKDD International conference on Knowledge discovery and data mining (KDD'03)
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
19
-
-
0030126609
-
Learning in presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in presence of concept drift and hidden contexts. Machine Learning, (23):69-101, 1996.
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|