메뉴 건너뛰기




Volumn 22, Issue 10, 2010, Pages 1401-1414

Enhanced visual analysis for cluster tendency assessment and data partitioning

Author keywords

cluster tendency; Clustering; out of sample extension.; spectral embedding; VAT

Indexed keywords

CLUSTER TENDENCY; CLUSTERING; OUT-OF-SAMPLE EXTENSION; SPECTRAL EMBEDDING; VAT;

EID: 77956025853     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2009.192     Document Type: Article
Times cited : (43)

References (50)
  • 3
    • 35348896605 scopus 로고    scopus 로고
    • Visual assessment of clustering tendency for rectangular dissimilarity matrices
    • Oct.
    • J.C. Bezdek, R.J. Hathaway, and J. Huband, "Visual Assessment of Clustering Tendency for Rectangular Dissimilarity Matrices," IEEE Trans. Fuzzy Systems, vol.15, no.5, pp. 890-903, Oct. 2007.
    • (2007) IEEE Trans. Fuzzy Systems , vol.15 , Issue.5 , pp. 890-903
    • Bezdek, J.C.1    Hathaway, R.J.2    Huband, J.3
  • 5
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • Dec.
    • D. Cai, X. He, and J. Han, "Document Clustering Using Locality Preserving Indexing," IEEE Trans. Knowledge and Data Eng., vol.17, no.12, pp. 1624-1637, Dec. 2005.
    • (2005) IEEE Trans. Knowledge and Data Eng. , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 6
    • 77956031074 scopus 로고    scopus 로고
    • Sectral Graph Theory
    • F. Chung, Spectral Graph Theory, vol.92. Am. Math. Soc., 1997.
    • (1997) Am. Math. Soc. , vol.92
    • Chung, F.1
  • 8
    • 33646111187 scopus 로고    scopus 로고
    • Scalable visual assessment of cluster tendency
    • R. Hathaway, J.C. Bezdek, and J. Huband, "Scalable Visual Assessment of Cluster Tendency," Pattern Recognition, vol.39, pp. 1315-1324, 2006.
    • (2006) Pattern Recognition , vol.39 , pp. 1315-1324
    • Hathaway, R.1    Bezdek, J.C.2    Huband, J.3
  • 9
    • 35048883479 scopus 로고    scopus 로고
    • A comparative study of several cluster number selection criteria
    • Springer
    • X. Hu and L. Xu, "A Comparative Study of Several Cluster Number Selection Criteria," Intelligent Data Engineering and Automated Learning, pp. 195-202, Springer, 2003.
    • (2003) Intelligent Data Engineering and Automated Learning , pp. 195-202
    • Hu, X.1    Xu, L.2
  • 10
    • 24044492227 scopus 로고    scopus 로고
    • Bigvat: Visual assessment of cluster tendency for large data sets
    • J. Huband, J.C. Bezdek, and R. Hathaway, "Bigvat: Visual Assessment of Cluster Tendency for Large Data Sets," Pattern Recognition, vol.38, no.11, pp. 1875-1886, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 1875-1886
    • Huband, J.1    Bezdek, J.C.2    Hathaway, R.3
  • 11
    • 84976658532 scopus 로고
    • A computer generated aid for cluster analysis
    • R. Ling, "A Computer Generated Aid for Cluster Analysis," Comm. ACM, vol.16, pp. 355-361, 1973.
    • (1973) Comm. ACM , vol.16 , pp. 355-361
    • Ling, R.1
  • 12
    • 0038363049 scopus 로고
    • Elsevier Science publishers B.V. and Akadémiai Kiadó , Budarest
    • L. Lovasz and M. Plummer, Matching Theory. Elsevier Science publishers B.V. and Akadémiai Kiadó , Budarest, 1986.
    • (1986) Matching Theory
    • Lovasz, L.1    Plummer, M.2
  • 13
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • Dec.
    • U. Maulik and S. Bandyopadhyay, "Performance Evaluation of Some Clustering Algorithms and Validity Indices," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.24, no.12, pp. 1650-1654, Dec. 2002.
    • (2002) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.24 , Issue.12 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 16
    • 70449129633 scopus 로고    scopus 로고
    • Incremental spectral clustering with application to monitoring of evolving blog communities
    • H.Z. Ning, W. Xu, Y. Chi, and T.S. Huang, "Incremental Spectral Clustering with Application to Monitoring of Evolving Blog Communities," Proc. SIAM Int'l Conf. Data Mining, 2007.
    • (2007) Proc. SIAM Int'l Conf. Data Mining
    • Ning, H.Z.1    Xu, W.2    Chi, Y.3    Huang, T.S.4
  • 17
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Jan.
    • N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Trans. Systems, Man, and Cybernetics, vol.9, no.1, pp. 62-66, Jan. 1979.
    • (1979) IEEE Trans. Systems, Man, and Cybernetics , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 19
    • 0023453329 scopus 로고
    • A graphical aid to the interpretations and validation of cluster analysis
    • P.J. Rousseeuw, "A Graphical Aid to the Interpretations and Validation of Cluster Analysis," J. Computational and Applied Math., vol.20, pp. 53-65, 1987.
    • (1987) J. Computational and Applied Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 23
    • 0033285447 scopus 로고    scopus 로고
    • Segmentation using eigenvectors: A unifying view
    • Y. Weiss, "Segmentation Using Eigenvectors: A Unifying View," Proc. IEEE Int'l Conf. Computer Vision, pp. 975-982, 1999.
    • (1999) Proc. IEEE Int'l Conf. Computer Vision , pp. 975-982
    • Weiss, Y.1
  • 24
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • May
    • R. Xu and D. Wunsch, II, "Survey of Clustering Algorithms," IEEE Trans. Neural Networks, vol.16, no.3, pp. 645-678, May 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, I.I.D.2
  • 25
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu, X. Liu, and Y. Gong, "Document Clustering Based on Non-Negative Matrix Factorization," Proc. ACM SIGIR, 2003.
    • (2003) Proc. ACM SIGIR
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 27
    • 0042459889 scopus 로고
    • Indices of partition fuzziness and the detection of clusters in large sets
    • Elsevier
    • J.C. Dunn, "Indices of Partition Fuzziness and the Detection of Clusters in Large Sets," Fuzzy Automata and Decision Processes, Elsevier, 1976.
    • (1976) Fuzzy Automata and Decision Processes
    • Dunn, J.C.1
  • 31
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • June
    • A. Georghiades, P. Belhumeur, and D. Kriegman, "From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, no.6, pp. 643-660, June 2001.
    • (2001) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 32
    • 40049083817 scopus 로고    scopus 로고
    • Selective sampling for approximate clustering of very large data sets
    • L. Wang, J. Bezdek, C. Leckie, and R. Kotagiri, "Selective Sampling for Approximate Clustering of Very Large Data Sets," Int'l J. Intelligent Systems, vol.23, no.3, pp. 313-331, 2008.
    • (2008) Int'l J. Intelligent Systems , vol.23 , Issue.3 , pp. 313-331
    • Wang, L.1    Bezdek, J.2    Leckie, C.3    Kotagiri, R.4
  • 35
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • R.B. Calinski and J. Harabasz, "A Dendrite Method for Cluster Analysis," Comm. Statistics, vol.3, pp. 1-27, 1974.
    • (1974) Comm. Statistics , vol.3 , pp. 1-27
    • Calinski, R.B.1    Harabasz, J.2
  • 37
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data-set via the gap statistics
    • R. Tibshirani, G. Walther, and T. Hastie, "Estimating the Number of Clusters in a Data-Set via the Gap Statistics," J. Royal Statistical Soc. B, vol.63, pp. 411-423, 2001.
    • (2001) J. Royal Statistical Soc. B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 45
    • 67649260243 scopus 로고    scopus 로고
    • Automatically determining the number of clusters in unlabeled data sets
    • Mar.
    • L. Wang, C. Leckie, J. Bezdek, and R. Kotagiri, "Automatically Determining the Number of Clusters in Unlabeled Data Sets," IEEE Trans. Knowledge and Data Eng., vol.21, no.3, pp. 335-350, Mar. 2009.
    • (2009) IEEE Trans. Knowledge and Data Eng. , vol.21 , Issue.3 , pp. 335-350
    • Wang, L.1    Leckie, C.2    Bezdek, J.3    Kotagiri, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.