메뉴 건너뛰기




Volumn , Issue , 2010, Pages 479-486

A mono surrogate for multiobjective optimization

Author keywords

Multiobjective optimization; Support vector machine; Surrogate models

Indexed keywords

BENCH-MARK PROBLEMS; DECISION SPACE; EMPIRICAL VALIDATION; EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION; OBJECTIVE FUNCTIONS; ONE-CLASS SUPPORT VECTOR MACHINE; PARETO FRONT; PARETO SET; SINGLE-VALUE; SPEED-UPS; STANDARD VARIATION; SURROGATE APPROACH; SURROGATE MODEL;

EID: 77955916875     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830483.1830571     Document Type: Conference Paper
Times cited : (82)

References (17)
  • 1
    • 70349104508 scopus 로고    scopus 로고
    • Theory of the hypervolume indicator: Optimal μ-distributions and the choice of the reference point
    • ACM
    • A. Auger, J. Bader, D. Brockhoff, andE. Zitzler. Theory of the hypervolume indicator: Optimal μ-distributions and the choice of the reference point. In FOGA, pages 87-102. ACM, 2009.
    • (2009) FOGA , pp. 87-102
    • Auger, A.1    Bader, J.2    Brockhoff, D.3    Zitzler, E.4
  • 2
    • 0005871804 scopus 로고    scopus 로고
    • PESA-II: Region-based selection in evolutionary multiobjective optimization
    • Lee Spector et al., editor, Morgan Kaufmann
    • D. W. Corne, N. R. Jerram, J. D. Knowles, andM. J. Oates. PESA-II: Region-based selection in evolutionary multiobjective optimization. In Lee Spector et al., editor, GECCO-2001, pages 283-290. Morgan Kaufmann, 2001.
    • (2001) GECCO-2001 , pp. 283-290
    • Corne, D.W.1    Jerram, N.R.2    Knowles, J.D.3    Oates, M.J.4
  • 3
    • 0036530772 scopus 로고    scopus 로고
    • A fast elitist multi-objective genetic algorithm: NSGA-II
    • K. Deb, A. Pratap, S. Agarwal, andT. Meyarivan. A Fast Elitist Multi-Objective Genetic Algorithm: NSGA-II. IEEE TEC, 6: 182-197, 2000.
    • (2000) IEEE TEC , vol.6 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 4
    • 24344489452 scopus 로고    scopus 로고
    • An EMO Algorithm Using the Hypervolume Measure as Selection Criterion
    • LNCS 3410, Springer Verlag
    • M. Emmerich, N. Beume, andB. Naujoks. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In Evolutionary Multi-Criterion Opt., pages 62-76. LNCS 3410, Springer Verlag, 2005.
    • (2005) Evolutionary Multi-Criterion Opt. , pp. 62-76
    • Emmerich, M.1    Beume, N.2    Naujoks, B.3
  • 5
    • 33747424045 scopus 로고    scopus 로고
    • Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels
    • M. T. Emmerich, K. C. Giannakoglou, andB. Naujoks. Single- and Multiobjective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels. IEEE TEC, 10(4): 421-439, 2006.
    • (2006) IEEE TEC , vol.10 , Issue.4 , pp. 421-439
    • Emmerich, M.T.1    Giannakoglou, K.C.2    Naujoks, B.3
  • 6
    • 34248143032 scopus 로고    scopus 로고
    • Covariance matrix adaptation for multi-objective optimization
    • C. Igel, N. Hansen, andS. Roth. Covariance Matrix Adaptation for Multi-objective Optimization. Evolutionary Computation, 15(1): 1-28, 2007.
    • (2007) Evolutionary Computation , vol.15 , Issue.1 , pp. 1-28
    • Igel, C.1    Hansen, N.2    Roth, S.3
  • 7
    • 21144433756 scopus 로고    scopus 로고
    • A comprehensive survey of fitness approximation in evolutionary computation
    • Y. Jin. A Comprehensive Survey of Fitness Approximation in Evolutionary Computation. Soft Computing, 9(1): 3-12, 2005.
    • (2005) Soft Computing , vol.9 , Issue.1 , pp. 3-12
    • Jin, Y.1
  • 8
    • 57049172033 scopus 로고    scopus 로고
    • Meta-modeling in multiobjective optimization
    • J. Branke et al., editor, number 5252 in LNCS, Springer Verlag
    • J. Knowles andH. Nakayama. Meta-modeling in multiobjective optimization. In J. Branke et al., editor, Multiobjective Optimization, number 5252 in LNCS, pages 245-284. Springer Verlag, 2008.
    • (2008) Multiobjective Optimization , pp. 245-284
    • Knowles, J.1    Nakayama, H.2
  • 9
    • 34248139109 scopus 로고    scopus 로고
    • A tutorial on the performance assessment of stochastic multiobjective optimizers
    • J. Knowles, L. Thiele, andE. Zitzler. A tutorial on the performance assessment of stochastic multiobjective optimizers. Technical report, 2006.
    • (2006) Technical Report
    • Knowles, J.1    Thiele, L.2    Zitzler, E.3
  • 10
    • 18544381254 scopus 로고    scopus 로고
    • Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models
    • D. Whitley et al., editor, Morgan Kaufmann
    • K. Rasheed andH. Hirsh. Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models. In D. Whitley et al., editor, GECCO'2000, pages 628-635. Morgan Kaufmann, 2000.
    • (2000) GECCO'2000 , pp. 628-635
    • Rasheed, K.1    Hirsh, H.2
  • 12
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. J. Smola andB. Schölkopf. A tutorial on support vector regression. Statistics and Computing, 14(3): 199-222, 2004.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 14
    • 33846510443 scopus 로고    scopus 로고
    • Multiobjective Optimization using Surrogates
    • I. Parmee, editor, Institute for People-centred Computation
    • I. Voutchkov andA. Keane. Multiobjective Optimization using Surrogates. In I. Parmee, editor, ACDM'06, pages 167-175. Institute for People-centred Computation, 2006.
    • (2006) ACDM'06 , pp. 167-175
    • Voutchkov, I.1    Keane, A.2
  • 15
    • 47749112829 scopus 로고    scopus 로고
    • Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria
    • E. F. Wanner, F. G. G. aes, R. H. C. Takahashi, and P. J. Fleming. Local Search with Quadratic Approximations into Memetic Algorithms for Optimization with Multiple Criteria. Evolutionary Computation, 16(2): 185-224, 2008.
    • (2008) Evolutionary Computation , vol.16 , Issue.2 , pp. 185-224
    • Wanner, E.F.1    Aes, F.G.G.2    Takahashi, R.H.C.3    Fleming, P.J.4
  • 16
    • 77955903149 scopus 로고    scopus 로고
    • Generation of pareto frontiers using support vector machine
    • Y.Yun, H. Nakayama, andM. Arakava. Generation of pareto frontiers using support vector machine. In MCDM'04, 2004.
    • (2004) MCDM'04
    • Yun, Y.1    Nakayama, H.2    Arakava, M.3
  • 17
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • E. Zitzler, K. Deb, andL. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8: 173-195, 2000.
    • (2000) Evolutionary Computation , vol.8 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.