메뉴 건너뛰기




Volumn , Issue , 2010, Pages 351-358

The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization

Author keywords

Anticipation; Estimation of distribution algorithms; Mixture distribution; Multi Objective optimization

Indexed keywords

ANTICIPATION; BENCH-MARK PROBLEMS; CLUSTERING TECHNIQUES; DISTRIBUTION PARAMETERS; ESTIMATION OF DISTRIBUTION ALGORITHMS; GAUSSIANS; MEAN SHIFT; MIXTURE DISTRIBUTION; MIXTURE-MODELLING; MULTI OBJECTIVE; OBJECTIVE SPACE; OPTIMIZERS; OVERFITTING;

EID: 77955893229     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830483.1830549     Document Type: Conference Paper
Times cited : (34)

References (13)
  • 1
    • 72749083131 scopus 로고    scopus 로고
    • On empirical memory design, faster selection of Bayesian factorizations and parameter-free Gaussian EDAs
    • G. Raidi et al., editors, New York, New York, ACM Press
    • P. A. N. Bosman. On empirical memory design, faster selection of Bayesian factorizations and parameter-free Gaussian EDAs. In G. Raidi et al., editors, Proc. of the Genetic and Evolutionary Comp. Conf. - GECCO-2009, pages 389-396, New York, New York, 2009. ACM Press.
    • (2009) Proc. of the Genetic and Evolutionary Comp. Conf. - GECCO-2009 , pp. 389-396
    • Bosman, P.A.N.1
  • 2
    • 0036856506 scopus 로고    scopus 로고
    • Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
    • P. A. N. Bosman andD. Thierens. Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms. International J. of Approx. Reasoning, 31(3):259-289, 2002.
    • (2002) International J. of Approx. Reasoning , vol.31 , Issue.3 , pp. 259-289
    • Bosman, P.A.N.1    Thierens, D.2
  • 3
    • 34548078739 scopus 로고    scopus 로고
    • Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms
    • D. Thierens et al., editors, New York, New York, ACM Press
    • P. A. N. Bosman andD. Thierens. Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms. In D. Thierens et al., editors, Proc. of the Genetic and Evol. Comp. Conf. - GECCO-2007, pages 500-507, New York, New York, 2007. ACM Press.
    • (2007) Proc. of the Genetic and Evol. Comp. Conf. - GECCO-2007 , pp. 500-507
    • Bosman, P.A.N.1    Thierens, D.2
  • 5
    • 15544373170 scopus 로고    scopus 로고
    • Population-based continuous optimization, probabilistic modelling and mean shift
    • M. Gallagher andM. Frean. Population-based continuous optimization, probabilistic modelling and mean shift. Evolutionary Computation, 13(1):29-42, 2005.
    • (2005) Evolutionary Computation , vol.13 , Issue.1 , pp. 29-42
    • Gallagher, M.1    Frean, M.2
  • 6
    • 0036856581 scopus 로고    scopus 로고
    • Mathematical modelling of UMDAc algorithm with tournament selection, behaviour on linear and quadratic functions
    • C. González, J. A. Lozano, andP. Larrañaga. Mathematical modelling of UMDAc algorithm with tournament selection, behaviour on linear and quadratic functions. International Journal of Approximate Reasoning, 31(3):313-340, 2002.
    • (2002) International Journal of Approximate Reasoning , vol.31 , Issue.3 , pp. 313-340
    • González, C.1    Lozano, J.A.2    Larrañaga, P.3
  • 7
    • 27144489429 scopus 로고    scopus 로고
    • Behaviour of UMDAc with truncation selection on monotonous functions
    • D. Corne et al., editors, Piscataway, New Jersey, IEEE Press
    • J. Grahl, S. Minner, andF. Rothlauf. Behaviour of UMDAc with truncation selection on monotonous functions. In D. Corne et al., editors, Proceedings of the IEEE Congress on Evolutionary Computation - CEC-2005, pages 2553-2559, Piscataway, New Jersey, 2005. IEEE Press.
    • (2005) Proceedings of the IEEE Congress on Evolutionary Computation - CEC-2005 , pp. 2553-2559
    • Grahl, J.1    Minner, S.2    Rothlauf, F.3
  • 9
    • 33750226016 scopus 로고    scopus 로고
    • Local search for multiobjective function optimization: Pareto descend method
    • M. Keijzer et al., editors, New York, New York, ACM Press
    • K. Harada, J. Sakuma, andS. Kobayashi. Local search for multiobjective function optimization: Pareto descend method. In M. Keijzer et al., editors, Proc. of the Genetic and Evolutionary Computation Conf. - GECCO-2006, pages 659-666, New York, New York, 2006. ACM Press.
    • (2006) Proc. of the Genetic and Evolutionary Computation Conf. - GECCO-2006 , pp. 659-666
    • Harada, K.1    Sakuma, J.2    Kobayashi, S.3
  • 10
    • 58349094201 scopus 로고    scopus 로고
    • Discussion of search strategy for multi-objective genetic algorithm with consideration of accuracy and broadness of Pareto optimal solutions
    • X. Li et al., editors, Berlin, Springer-Verlag.
    • T. Hiroyasu, M. Nishioka, M. Miki, andH. Yokouchi. Discussion of search strategy for multi-objective genetic algorithm with consideration of accuracy and broadness of Pareto optimal solutions. In X. Li et al., editors, Simulated Evolution and Learning - SEAL-2008, pages 339-348, Berlin, 2008. Springer-Verlag.
    • (2008) Simulated Evolution and Learning - SEAL-2008 , pp. 339-348
    • Hiroyasu, T.1    Nishioka, M.2    Miki, M.3    Yokouchi, H.4
  • 11
    • 34248143032 scopus 로고    scopus 로고
    • Covariance matrix adaptation for multi-objective optimization
    • C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi-objective optimization. Evolutionary Computation, 15(1):l-28, 2007.
    • (2007) Evolutionary Computation , vol.15 , Issue.1
    • Igel, C.1    Hansen, N.2    Roth, S.3
  • 13
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • E. Zitzler, K. Deb, andL. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2):173-195, 2000.
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.