메뉴 건너뛰기




Volumn , Issue , 2007, Pages 500-507

Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms

Author keywords

Adaptive variance scaling; Estimation of distribution algorithms; Evolutionary algorithms; Multi objective optimization

Indexed keywords

ADAPTIVE SYSTEMS; DISTRIBUTION FUNCTIONS; MULTIOBJECTIVE OPTIMIZATION; NORMAL DISTRIBUTION; PARAMETER ESTIMATION;

EID: 34548078739     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1276958.1277067     Document Type: Conference Paper
Times cited : (24)

References (27)
  • 2
    • 0002651837 scopus 로고
    • An overview of evolutionary algorithms for parameter optimization
    • Th. Back and H.-P. Schwefel. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1):1-23, 1993.
    • (1993) Evolutionary Computation , vol.1 , Issue.1 , pp. 1-23
    • Back, T.1    Schwefel, H.-P.2
  • 3
    • 33750242504 scopus 로고    scopus 로고
    • P. A. N. Bosman and E. D. de Jong. Combining gradient techniques for numerical multi-objective evolutionary optimization. In W. B. Langdon et al., editors, Proc. of the Genetic and Evolutionary Comp. Conf. - GECCO-2006, pages 627-634, New York, New York, 2006. ACM.
    • P. A. N. Bosman and E. D. de Jong. Combining gradient techniques for numerical multi-objective evolutionary optimization. In W. B. Langdon et al., editors, Proc. of the Genetic and Evolutionary Comp. Conf. - GECCO-2006, pages 627-634, New York, New York, 2006. ACM.
  • 5
    • 0038612858 scopus 로고    scopus 로고
    • The balance between proximity and diversity in multi-objective evolutionary algorithms
    • P. A. N. Bosman and D. Thierens. The balance between proximity and diversity in multi-objective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 7:174-188, 2003.
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , pp. 174-188
    • Bosman, P.A.N.1    Thierens, D.2
  • 7
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 7(3):205-230, 1999.
    • (1999) Evolutionary Computation , vol.7 , Issue.3 , pp. 205-230
    • Deb, K.1
  • 8
    • 84947926042 scopus 로고    scopus 로고
    • A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
    • M. Schoenauer et al, editors, Springer
    • K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer et al., editors, Par. Prob. Solving from Nature - PPSN VI, pages 849-858. Springer, 2000.
    • (2000) Par. Prob. Solving from Nature - PPSN VI , pp. 849-858
    • Deb, K.1    Agrawal, S.2    Pratab, A.3    Meyarivan, T.4
  • 9
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evol. Computation, 3(1):1-16, 1995.
    • (1995) Evol. Computation , vol.3 , Issue.1 , pp. 1-16
    • Fonseca, C.M.1    Fleming, P.J.2
  • 12
    • 27144489429 scopus 로고    scopus 로고
    • Behaviour of UMDAc with truncation selection on monotonous functions
    • Piscataway, New Jersey, IEEE Press
    • J. Grahl, S. Minner, and F. Rothlauf. Behaviour of UMDAc with truncation selection on monotonous functions. In Proc. of the Congress on Evol. Comp. - CEC-2005, pages 2553-2559, Piscataway, New Jersey, 2005. IEEE Press.
    • (2005) Proc. of the Congress on Evol. Comp. - CEC-2005 , pp. 2553-2559
    • Grahl, J.1    Minner, S.2    Rothlauf, F.3
  • 13
    • 0042879997 scopus 로고    scopus 로고
    • Reducing the time complexly of the derandomized evolution strategy with covariance matrix adaption
    • N. Hansen, S. D. Mller, and P. Koumoutsakos. Reducing the time complexly of the derandomized evolution strategy with covariance matrix adaption. Evolutionary Computation, 11(1):1-18, 2003.
    • (2003) Evolutionary Computation , vol.11 , Issue.1 , pp. 1-18
    • Hansen, N.1    Mller, S.D.2    Koumoutsakos, P.3
  • 14
    • 0035377566 scopus 로고    scopus 로고
    • Completely derandomized self-adaptation in evolution strategies
    • N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159-195, 2001.
    • (2001) Evolutionary Computation , vol.9 , Issue.2 , pp. 159-195
    • Hansen, N.1    Ostermeier, A.2
  • 17
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multi-objective optimization
    • M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity in evolutionary multi-objective optimization. Evol. Comp., 10(3):263-282, 2002.
    • (2002) Evol. Comp , vol.10 , Issue.3 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 20
    • 0033258156 scopus 로고    scopus 로고
    • FDA - a scalable evolutionary algorithm for the optimization of additively decomposed functions
    • H. Mühlenbein and T. Mahnig. FDA - a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evol. Comp., 7:353-376, 1999.
    • (1999) Evol. Comp , vol.7 , pp. 353-376
    • Mühlenbein, H.1    Mahnig, T.2
  • 21
    • 33845304806 scopus 로고    scopus 로고
    • A mixed bayesian optimization algorithm with variance adaptation
    • X. Yao et al, editors, Berlin, Springer-Verlag
    • J. Ocenasek, S. Kern, N. Hansen, and P. Koumoutsakos. A mixed bayesian optimization algorithm with variance adaptation. In X. Yao et al., editors, Parallel Problem Solving from Nature - PPSN VIII, pages 352-361, Berlin, 2004. Springer-Verlag.
    • (2004) Parallel Problem Solving from Nature - PPSN VIII , pp. 352-361
    • Ocenasek, J.1    Kern, S.2    Hansen, N.3    Koumoutsakos, P.4
  • 22
    • 84947913801 scopus 로고    scopus 로고
    • Genetic algorithms, clustering, and the breaking of symmetry
    • M. Schoenauer et al, editors, Springer
    • M. Pelikan and D. E. Goldberg. Genetic algorithms, clustering, and the breaking of symmetry. In M. Schoenauer et al., editors, Par. Prob. Solving from Nature - PPSN VI, pages 385-394. Springer, 2000.
    • (2000) Par. Prob. Solving from Nature - PPSN VI , pp. 385-394
    • Pelikan, M.1    Goldberg, D.E.2
  • 24
    • 0033258368 scopus 로고    scopus 로고
    • Scalability problems of simple genetic algorithms
    • D. Thierens. Scalability problems of simple genetic algorithms. Evol. Computation, 7(4):331-352, 1999.
    • (1999) Evol. Computation , vol.7 , Issue.4 , pp. 331-352
    • Thierens, D.1
  • 25
    • 0011799587 scopus 로고    scopus 로고
    • Multi-objective mixture-based iterated density estimation evolutionary algorithms
    • L. Spector et al, editors, San Francisco, California, Morgan Kaufmann
    • D. Thierens and P. A. N. Bosman. Multi-objective mixture-based iterated density estimation evolutionary algorithms. In L. Spector et al., editors, Proc. of the Genetic and Evolutionary Computation Conference - GECCO-2001, pages 663-670, San Francisco, California, 2001. Morgan Kaufmann.
    • (2001) Proc. of the Genetic and Evolutionary Computation Conference - GECCO-2001 , pp. 663-670
    • Thierens, D.1    Bosman, P.A.N.2
  • 26
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Computation, 8(2):173-195, 2000.
    • (2000) Evol. Computation , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.