-
1
-
-
0003984832
-
Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
-
School of Computer Science, Carnegie Mellon University
-
Baluja, S. (1994). Population-Based Incremental Learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, School of Computer Science, Carnegie Mellon University.
-
(1994)
Technical Report
, vol.CMU-CS-94-163
-
-
Baluja, S.1
-
2
-
-
84899021239
-
Genetic algorithms and explicit search statistics
-
Mozer, M., Jordan, M., and Petsche, T., editors, Cambridge, MA. The MIT Press
-
Baluja, S. (1997). Genetic algorithms and explicit search statistics. In Mozer, M., Jordan, M., and Petsche, T., editors, Advances in Neural Information Processing Systems, volume 9, pages 319-325, Cambridge, MA. The MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 319-325
-
-
Baluja, S.1
-
3
-
-
0003858748
-
Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space
-
Carnegie Mellon University
-
Baluja, S. and Davies, S. (1997). Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. Technical Report CMU-CS-97-107, Carnegie Mellon University.
-
(1997)
Technical Report
, vol.CMU-CS-97-107
-
-
Baluja, S.1
Davies, S.2
-
4
-
-
15544364085
-
An adaptive scheme for real function optimization acting as a selection operator
-
Yao, X. and Fogel, D., editors. IEEE
-
Berny, A. (2000a). An adaptive scheme for real function optimization acting as a selection operator. In Yao, X. and Fogel, D., editors, First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, pages 140-149. IEEE.
-
(2000)
First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks
, pp. 140-149
-
-
Berny, A.1
-
5
-
-
84947940068
-
Selection and reinforcement learning for combinatorial optimization
-
et al., M. S., editor, Parallel Problem Solving from Nature - PPSN VI. Springer Verlag
-
Berny, A. (2000b). Selection and reinforcement learning for combinatorial optimization. In et al., M. S., editor, Parallel Problem Solving from Nature - PPSN VI, volume 1917 of Lecture Notes in Computer Science, pages 601-610. Springer Verlag.
-
(2000)
Lecture Notes in Computer Science
, vol.1917
, pp. 601-610
-
-
Berny, A.1
-
6
-
-
15544375067
-
Statistical machine learning and combinatorial optimization
-
Kallel, L., Naudts, B., and Rogers, A., editors. Springer Verlag
-
Berny, A. (2001). Statistical machine learning and combinatorial optimization. In Kallel, L., Naudts, B., and Rogers, A., editors, Theoretical Aspects of Evolutionary Computation, pages 287-306. Springer Verlag.
-
(2001)
Theoretical Aspects of Evolutionary Computation
, pp. 287-306
-
-
Berny, A.1
-
7
-
-
32444432959
-
An algorithmic framework for density estimation based evolutionary algorithms
-
Department of Computer Science, Utrecht University
-
Bosman, P. A. N. and Thierens, D. (1999). An algorithmic framework for density estimation based evolutionary algorithms. Technical Report UU-CS-1999-46, Department of Computer Science, Utrecht University.
-
(1999)
Technical Report
, vol.UU-CS-1999-46
-
-
Bosman, P.A.N.1
Thierens, D.2
-
8
-
-
84947922384
-
Expanding from discrete to continuous estimation of distribution algorithms: The IDEA
-
Parallel Problem Solving from Nature - PPSN VI
-
Bosman, P. A. N. and Thierens, D. (2000). Expanding from discrete to continuous estimation of distribution algorithms: The IDEA. In Parallel Problem Solving from Nature - PPSN VI, volume 1917 of Lecture Notes in Computer Science, pages 767-776.
-
(2000)
Lecture Notes in Computer Science
, vol.1917
, pp. 767-776
-
-
Bosman, P.A.N.1
Thierens, D.2
-
9
-
-
0005899791
-
Statistical machine learning for large-scale optimization
-
Boyan, J., Buntine, W., and (eds.), A. J. (2000). Statistical machine learning for large-scale optimization. Neural Computing Surveys, 3:1-58.
-
(2000)
Neural Computing Surveys
, vol.3
, pp. 1-58
-
-
Boyan, J.1
Buntine, W.2
-
11
-
-
78049265488
-
MIMIC: Finding optima by estimating probability densities
-
De Bonet, J. S., Isbell, Jr., C. L., and Viola, P. (1997). MIMIC: Finding optima by estimating probability densities. In Advances in Neural Information Processing Systems, volume 9, pages 424-430.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 424-430
-
-
De Bonet, J.S.1
Isbell Jr., C.L.2
Viola, P.3
-
14
-
-
0016421071
-
The estimation of the gradient of a density function, with applications in pattern recognition
-
Fukunaga, K. and Hostetler, L. D. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, IT-21(1):32-40.
-
(1975)
IEEE Transactions on Information Theory
, vol.IT-21
, Issue.1
, pp. 32-40
-
-
Fukunaga, K.1
Hostetler, L.D.2
-
16
-
-
0000659073
-
Real-valued evolutionary optimization using a flexible probability density estimator
-
Banzhaf, W. and et al., editors, San Francisco, CA. Morgan Kaufmann
-
Gallagher, M., Frean, M., and Downs, T. (1999). Real-valued evolutionary optimization using a flexible probability density estimator. In Banzhaf, W. and et al., editors, Proc. Genetic and Evolutionary Computation Conference (GECCO'99), pages 840-846, San Francisco, CA. Morgan Kaufmann.
-
(1999)
Proc. Genetic and Evolutionary Computation Conference (GECCO'99)
, pp. 840-846
-
-
Gallagher, M.1
Frean, M.2
Downs, T.3
-
17
-
-
0000848576
-
Analyzing the PBIL algorithm by means of discrete dynamical systems
-
González, C., Lozano, J. A., and Larrañaga, P. (2000). Analyzing the PBIL algorithm by means of discrete dynamical systems. Complex Systems, 12(4):465-479.
-
(2000)
Complex Systems
, vol.12
, Issue.4
, pp. 465-479
-
-
González, C.1
Lozano, J.A.2
Larrañaga, P.3
-
18
-
-
0011847403
-
Mathematical modelling of discrete estimation of distribution algorithms
-
Larrañaga, P. and Lozano, J. A., editors, chapter 6. Kluwer
-
González, C., Lozano, J. A., and Larrañaga, P. (2002). Mathematical modelling of discrete estimation of distribution algorithms. In Larrañaga, P. and Lozano, J. A., editors, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, chapter 6, pages 147-163. Kluwer.
-
(2002)
Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
, pp. 147-163
-
-
González, C.1
Lozano, J.A.2
Larrañaga, P.3
-
19
-
-
0003979924
-
-
Addison-Wesley, Redwood City, CA
-
Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City, CA.
-
(1991)
Introduction to the Theory of Neural Computation
-
-
Hertz, J.1
Krogh, A.2
Palmer, R.G.3
-
20
-
-
4344693783
-
A review on estimation of distribution algorithms
-
Larrañaga, P. and Lozano, J. A., editors, chapter 3. Kluwer
-
Larrañaga, P. (2002). A review on estimation of distribution algorithms. In Larrañaga, P. and Lozano, J. A., editors, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, chapter 3, pages 57-100. Kluwer.
-
(2002)
Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
, pp. 57-100
-
-
Larrañaga, P.1
-
22
-
-
0001171707
-
BOA: The Bayesian optimization algorithm
-
Banzhaf, W. and et al, editors, San Francisco, CA. Morgan Kaufmann
-
Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm. In Banzhaf, W. and et al, editors, Proc. Genetic and Evolutionary Computation Conference (GECCO'99), pages 525-532, San Francisco, CA. Morgan Kaufmann.
-
(1999)
Proc. Genetic and Evolutionary Computation Conference (GECCO'99)
, pp. 525-532
-
-
Pelikan, M.1
Goldberg, D.E.2
Cantú-Paz, E.3
-
23
-
-
0036180213
-
A survey of optimization by building and using probabilistic models
-
Pelikan, M., Goldberg, D. E., and Lobo, F. (2002). A survey of optimization by building and using probabilistic models. Computational Optimization and Applications, 21(1):5-20.
-
(2002)
Computational Optimization and Applications
, vol.21
, Issue.1
, pp. 5-20
-
-
Pelikan, M.1
Goldberg, D.E.2
Lobo, F.3
-
24
-
-
33845276056
-
Stochastic hill climbing with learning by vectors of normal distributions
-
8/12/99
-
Rudlof, S. and Köppen, M. (1996). Stochastic hill climbing with learning by vectors of normal distributions. In 1st Online Workshop on Soft Computing, Retrieved from http://www.bioele.nuee.nagoya-u.ac.jp/wscl/ (8/12/99).
-
(1996)
1st Online Workshop on Soft Computing
-
-
Rudlof, S.1
Köppen, M.2
-
26
-
-
84878615636
-
Extending population-based incremental learning to continuous search spaces
-
Eiben, A. and et al., editors, Parallel Problem Solving from Nature - PPSN V, Springer Verlag
-
Sebag, M. and Ducoulombier, A. (1998). Extending population-based incremental learning to continuous search spaces. In Eiben, A. and et al., editors, Parallel Problem Solving from Nature - PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 418-427, Springer Verlag.
-
(1998)
Lecture Notes in Computer Science
, vol.1498
, pp. 418-427
-
-
Sebag, M.1
Ducoulombier, A.2
|