메뉴 건너뛰기




Volumn 13, Issue 1, 2005, Pages 29-42

Population-based continuous optimization, probabilistic modelling and mean shift

Author keywords

Continuous optimization; Estimation of distribution algorithms; Mean shift; Population based incremental learning; Probabilistic modelling

Indexed keywords

CONTINUOUS OPTIMIZATION; ESTIMATION OF DISTRIBUTION ALGORITHMS; MEAN SHIFT; POPULTIONA-BASED INCREMENTAL LEARNING; PROBABILISTIC MODELING;

EID: 15544373170     PISSN: 10636560     EISSN: None     Source Type: Journal    
DOI: 10.1162/1063656053583478     Document Type: Article
Times cited : (37)

References (27)
  • 1
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • School of Computer Science, Carnegie Mellon University
    • Baluja, S. (1994). Population-Based Incremental Learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, School of Computer Science, Carnegie Mellon University.
    • (1994) Technical Report , vol.CMU-CS-94-163
    • Baluja, S.1
  • 2
    • 84899021239 scopus 로고    scopus 로고
    • Genetic algorithms and explicit search statistics
    • Mozer, M., Jordan, M., and Petsche, T., editors, Cambridge, MA. The MIT Press
    • Baluja, S. (1997). Genetic algorithms and explicit search statistics. In Mozer, M., Jordan, M., and Petsche, T., editors, Advances in Neural Information Processing Systems, volume 9, pages 319-325, Cambridge, MA. The MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 319-325
    • Baluja, S.1
  • 3
    • 0003858748 scopus 로고    scopus 로고
    • Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space
    • Carnegie Mellon University
    • Baluja, S. and Davies, S. (1997). Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. Technical Report CMU-CS-97-107, Carnegie Mellon University.
    • (1997) Technical Report , vol.CMU-CS-97-107
    • Baluja, S.1    Davies, S.2
  • 4
    • 15544364085 scopus 로고    scopus 로고
    • An adaptive scheme for real function optimization acting as a selection operator
    • Yao, X. and Fogel, D., editors. IEEE
    • Berny, A. (2000a). An adaptive scheme for real function optimization acting as a selection operator. In Yao, X. and Fogel, D., editors, First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, pages 140-149. IEEE.
    • (2000) First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks , pp. 140-149
    • Berny, A.1
  • 5
    • 84947940068 scopus 로고    scopus 로고
    • Selection and reinforcement learning for combinatorial optimization
    • et al., M. S., editor, Parallel Problem Solving from Nature - PPSN VI. Springer Verlag
    • Berny, A. (2000b). Selection and reinforcement learning for combinatorial optimization. In et al., M. S., editor, Parallel Problem Solving from Nature - PPSN VI, volume 1917 of Lecture Notes in Computer Science, pages 601-610. Springer Verlag.
    • (2000) Lecture Notes in Computer Science , vol.1917 , pp. 601-610
    • Berny, A.1
  • 6
    • 15544375067 scopus 로고    scopus 로고
    • Statistical machine learning and combinatorial optimization
    • Kallel, L., Naudts, B., and Rogers, A., editors. Springer Verlag
    • Berny, A. (2001). Statistical machine learning and combinatorial optimization. In Kallel, L., Naudts, B., and Rogers, A., editors, Theoretical Aspects of Evolutionary Computation, pages 287-306. Springer Verlag.
    • (2001) Theoretical Aspects of Evolutionary Computation , pp. 287-306
    • Berny, A.1
  • 7
    • 32444432959 scopus 로고    scopus 로고
    • An algorithmic framework for density estimation based evolutionary algorithms
    • Department of Computer Science, Utrecht University
    • Bosman, P. A. N. and Thierens, D. (1999). An algorithmic framework for density estimation based evolutionary algorithms. Technical Report UU-CS-1999-46, Department of Computer Science, Utrecht University.
    • (1999) Technical Report , vol.UU-CS-1999-46
    • Bosman, P.A.N.1    Thierens, D.2
  • 8
    • 84947922384 scopus 로고    scopus 로고
    • Expanding from discrete to continuous estimation of distribution algorithms: The IDEA
    • Parallel Problem Solving from Nature - PPSN VI
    • Bosman, P. A. N. and Thierens, D. (2000). Expanding from discrete to continuous estimation of distribution algorithms: The IDEA. In Parallel Problem Solving from Nature - PPSN VI, volume 1917 of Lecture Notes in Computer Science, pages 767-776.
    • (2000) Lecture Notes in Computer Science , vol.1917 , pp. 767-776
    • Bosman, P.A.N.1    Thierens, D.2
  • 9
    • 0005899791 scopus 로고    scopus 로고
    • Statistical machine learning for large-scale optimization
    • Boyan, J., Buntine, W., and (eds.), A. J. (2000). Statistical machine learning for large-scale optimization. Neural Computing Surveys, 3:1-58.
    • (2000) Neural Computing Surveys , vol.3 , pp. 1-58
    • Boyan, J.1    Buntine, W.2
  • 14
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • Fukunaga, K. and Hostetler, L. D. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, IT-21(1):32-40.
    • (1975) IEEE Transactions on Information Theory , vol.IT-21 , Issue.1 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.D.2
  • 16
    • 0000659073 scopus 로고    scopus 로고
    • Real-valued evolutionary optimization using a flexible probability density estimator
    • Banzhaf, W. and et al., editors, San Francisco, CA. Morgan Kaufmann
    • Gallagher, M., Frean, M., and Downs, T. (1999). Real-valued evolutionary optimization using a flexible probability density estimator. In Banzhaf, W. and et al., editors, Proc. Genetic and Evolutionary Computation Conference (GECCO'99), pages 840-846, San Francisco, CA. Morgan Kaufmann.
    • (1999) Proc. Genetic and Evolutionary Computation Conference (GECCO'99) , pp. 840-846
    • Gallagher, M.1    Frean, M.2    Downs, T.3
  • 17
    • 0000848576 scopus 로고    scopus 로고
    • Analyzing the PBIL algorithm by means of discrete dynamical systems
    • González, C., Lozano, J. A., and Larrañaga, P. (2000). Analyzing the PBIL algorithm by means of discrete dynamical systems. Complex Systems, 12(4):465-479.
    • (2000) Complex Systems , vol.12 , Issue.4 , pp. 465-479
    • González, C.1    Lozano, J.A.2    Larrañaga, P.3
  • 20
    • 4344693783 scopus 로고    scopus 로고
    • A review on estimation of distribution algorithms
    • Larrañaga, P. and Lozano, J. A., editors, chapter 3. Kluwer
    • Larrañaga, P. (2002). A review on estimation of distribution algorithms. In Larrañaga, P. and Lozano, J. A., editors, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, chapter 3, pages 57-100. Kluwer.
    • (2002) Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , pp. 57-100
    • Larrañaga, P.1
  • 24
    • 33845276056 scopus 로고    scopus 로고
    • Stochastic hill climbing with learning by vectors of normal distributions
    • 8/12/99
    • Rudlof, S. and Köppen, M. (1996). Stochastic hill climbing with learning by vectors of normal distributions. In 1st Online Workshop on Soft Computing, Retrieved from http://www.bioele.nuee.nagoya-u.ac.jp/wscl/ (8/12/99).
    • (1996) 1st Online Workshop on Soft Computing
    • Rudlof, S.1    Köppen, M.2
  • 26
    • 84878615636 scopus 로고    scopus 로고
    • Extending population-based incremental learning to continuous search spaces
    • Eiben, A. and et al., editors, Parallel Problem Solving from Nature - PPSN V, Springer Verlag
    • Sebag, M. and Ducoulombier, A. (1998). Extending population-based incremental learning to continuous search spaces. In Eiben, A. and et al., editors, Parallel Problem Solving from Nature - PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 418-427, Springer Verlag.
    • (1998) Lecture Notes in Computer Science , vol.1498 , pp. 418-427
    • Sebag, M.1    Ducoulombier, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.