메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages 111-135

A simulation study to compare robust clustering methods based on mixtures

Author keywords

Gaussian mixture; Mixture of t distributions; Model based clustering; Noise component

Indexed keywords

CLUSTERING ALGORITHMS; COMPUTER SIMULATION; GAUSSIAN DISTRIBUTION; IMAGE SEGMENTATION;

EID: 77955847680     PISSN: 18625347     EISSN: 18625355     Source Type: Journal    
DOI: 10.1007/s11634-010-0065-4     Document Type: Article
Times cited : (25)

References (18)
  • 1
    • 0027453616 scopus 로고
    • Model-based gaussian and non-gaussian clustering
    • Banfield J, Raftery AE (1993) Model-based gaussian and non-gaussian clustering. Biometrics 49: 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.E.2
  • 2
    • 85012830499 scopus 로고    scopus 로고
    • Coretto P (2008) The noise component in model-based clustering. PhD thesis, Department of Statistical Science, University College London. http://www. ontherubicon. com/pietro/docs/phdthesis. pdf.
  • 3
    • 0031493778 scopus 로고    scopus 로고
    • Trimmed k-means: An attempt to robustify quantizers
    • Cuesta-Albertos JA, Gordaliza A, Matrán C (1997) Trimmed k-means: an attempt to robustify quantizers. Ann Stat 25: 553-576.
    • (1997) Ann Stat , vol.25 , pp. 553-576
    • Cuesta-Albertos, J.A.1    Gordaliza, A.2    Matrán, C.3
  • 4
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41: 578-588.
    • (1998) Comput J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 5
    • 85012837784 scopus 로고    scopus 로고
    • Fraley C, Raftery AE (2006) Mclust version 3 for r: normal mixture modeling and model-based clustering. Technical report 504, Department of Statistics, University of Washington.
  • 6
    • 18444366492 scopus 로고    scopus 로고
    • A robust method for cluster analysis
    • Gallegos MT, Ritter G (2005) A robust method for cluster analysis. Ann Stat 33(5): 347-380.
    • (2005) Ann Stat , vol.33 , Issue.5 , pp. 347-380
    • Gallegos, M.T.1    Ritter, G.2
  • 8
    • 0001354471 scopus 로고
    • A constrained formulation of maximum-likelihood estimation for normal mixture distributions
    • Hathaway RJ (1985) A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Ann Stat 13: 795-800.
    • (1985) Ann Stat , vol.13 , pp. 795-800
    • Hathaway, R.J.1
  • 9
    • 24344501318 scopus 로고    scopus 로고
    • Breakdown points for maximum likelihood estimators of location-scale mixtures
    • Hennig C (2004) Breakdown points for maximum likelihood estimators of location-scale mixtures. Ann Stat 32(4): 1313-1340.
    • (2004) Ann Stat , vol.32 , Issue.4 , pp. 1313-1340
    • Hennig, C.1
  • 10
    • 43049108296 scopus 로고    scopus 로고
    • Robustness of ML estimators of location-scale mixtures
    • D. Baier and K. D. Wernecke (Eds.), Heidelberg: Springer
    • Hennig C (2005) Robustness of ML estimators of location-scale mixtures. In: Baier D, Wernecke KD (eds) Innovations in classification. Data science, and information systems. Springer, Heidelberg, pp 128-137.
    • (2005) Innovations in Classification. Data Science, and Information Systems , pp. 128-137
    • Hennig, C.1
  • 11
    • 84879562466 scopus 로고    scopus 로고
    • The noise component in model-based cluster analysis
    • C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker (Eds.), Berlin,: Springer
    • Hennig C, Coretto P (2008) The noise component in model-based cluster analysis. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Data analysis, machine learning and applications. Springer, Berlin, pp 127-138.
    • (2008) Data Analysis, Machine Learning and Applications , pp. 127-138
    • Hennig, C.1    Coretto, P.2
  • 12
    • 84950321853 scopus 로고
    • Comment on "Estimating mixtures of normal distributions and switching regressions" by R
    • Hosmer DW (1978) Comment on "Estimating mixtures of normal distributions and switching regressions" by R. Quandt and J. B. Ramsey. J Am Stat Assoc 73(364): 730-752.
    • (1978) Quandt and J.B. Ramsey. J Am Stat Assoc , vol.73 , Issue.364 , pp. 730-752
    • Hosmer, D.W.1
  • 13
    • 0037469124 scopus 로고    scopus 로고
    • Choosing initial values for the EM algorithm for finite mixtures
    • Karlis D, Xekalaki E (2003) Choosing initial values for the EM algorithm for finite mixtures. Comput Stat Data Anal 41(3-4): 577-590.
    • (2003) Comput Stat Data Anal , vol.41 , Issue.3-4 , pp. 577-590
    • Karlis, D.1    Xekalaki, E.2
  • 14
    • 0008602520 scopus 로고    scopus 로고
    • ML estimation of the multivariate t distribution and the EM algorithms
    • Liu C (1997) ML estimation of the multivariate t distribution and the EM algorithms. J Multivar Anal 63: 296-312.
    • (1997) J Multivar Anal , vol.63 , pp. 296-312
    • Liu, C.1
  • 16
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t-distribution
    • McLachlan G, Peel D (2000) Robust mixture modelling using the t-distribution. Stat Comput 10(4): 339-348.
    • (2000) Stat Comput , vol.10 , Issue.4 , pp. 339-348
    • McLachlan, G.1    Peel, D.2
  • 17
    • 34548307049 scopus 로고    scopus 로고
    • Robust fitting of mixtures using the trimmed likelihood estimator
    • Neykov N, Filzmoser P, Dimova R, Neytchev P (2007) Robust fitting of mixtures using the trimmed likelihood estimator. Comput Stat Data Anal 17(3): 299-308.
    • (2007) Comput Stat Data Anal , vol.17 , Issue.3 , pp. 299-308
    • Neykov, N.1    Filzmoser, P.2    Dimova, R.3    Neytchev, P.4
  • 18
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R, Walker HF (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev 26: 195-239.
    • (1984) SIAM Rev , vol.26 , pp. 195-239
    • Redner, R.1    Walker, H.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.