메뉴 건너뛰기




Volumn 2, Issue 3, 2009, Pages 51-63

Neural networks models for the flood forecasting and disaster prevention system in the small catchment

Author keywords

Cascade correlation; Disaster prevention system; Flood forecasting; Multilayer perceptron

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CATCHMENT; CORRELATION; DISASTER MANAGEMENT; FLOOD FORECASTING; GEOSTATISTICS; NUMERICAL MODEL; STREAMFLOW; TESTING METHOD;

EID: 77955750744     PISSN: 0974262X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (21)
  • 1
    • 0003691399 scopus 로고
    • Machine learning neural networks
    • John Wiley & Sons Inc., New York, NY, USA
    • Adeli H. and Hung S. L., Machine Learning Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley & Sons Inc., New York, NY, USA (1995)
    • (1995) Genetic Algorithms, and Fuzzy Systems
    • Adeli, H.1    Hung, S.L.2
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • ASCE task committee on application of neural networks in hydrology, artificial neural network in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Neural Networks in Hydrology, Artificial Neural Network in Hydrology. I: Preliminary Concepts, Journal of Hydmlogic Engineering, 5 (2), 115-123 (2000)
    • (2000) Journal of Hydmlogic Engineering , vol.5 , Issue.2 , pp. 115-123
  • 3
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F. and Bobēe B., Daily Reservoir Inflow Forecasting using Artificial Neural Networks with Stopped Training Approach, Journal of Hydrology, 230, 244-257 (2000)
    • (2000) Journal of Hydrology , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 4
    • 0003420910 scopus 로고
    • The cascade correlation learning architecture
    • Carnegie Mellon University, Pittsburgh, PA, USA
    • Fahlman S. E. and Lebiere C., The cascade correlation learning architecture. Rep. CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, PA, USA (1990)
    • (1990) Rep. CMU-CS-90-100
    • Fahlman, S.E.1    Lebiere, C.2
  • 5
  • 6
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • Fletcher R. and Reeves C. M., Function Minimization by Conjugate Gradients, Computer Journal, 7, 149-153 (1964)
    • (1964) Computer Journal , vol.7 , pp. 149-153
    • Fletcher, R.1    Reeves, C.M.2
  • 7
    • 0003413187 scopus 로고    scopus 로고
    • Prentice Hall, New Jersey
    • ndEdition. Prentice Hall, New Jersey (1999)
    • (1999) ndEdition
    • Haykin, S.1
  • 8
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the Rainfall-Runoff process
    • Hsu K., Gupta V. H. and Sorooshian S., Artificial Neural Network Modeling of the Rainfall-Runoff Process, Water Resources Research, 31 (10), 2517-2530 (1995)
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, V.H.2    Sorooshian, S.3
  • 9
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain A. and Srinivasulu S., Integrated Approach to Model Decomposed Flow Hydrograph using Artificial Neural Network and Conceptual Techniques, Journal of Hydrology, 317, 291-306 (2006)
    • (2006) Journal of Hydrology , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 10
    • 14644411776 scopus 로고    scopus 로고
    • Determination of an optimal unit pulse response function using real-coded genetic algorithm
    • Jain A., Srinivasulu S. and Bhattacharjya R. K., Determination of an Optimal Unit Pulse Response Function using Real-Coded Genetic Algorithm, Journal of Hydrology, 303, 199-241 (2005)
    • (2005) Journal of Hydrology , vol.303 , pp. 199-241
    • Jain, A.1    Srinivasulu, S.2    Bhattacharjya, R.K.3
  • 12
    • 1642475799 scopus 로고    scopus 로고
    • A study on the forecasting of daily streamflow using the multilayer neural networks model
    • In Korean
    • Kim S., A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model, Journal of Korea Water Resources Association, KWRA, 33 (5), 537-550 [In Korean] (2000)
    • (2000) Journal of Korea Water Resources Association, KWRA , vol.33 , Issue.5 , pp. 537-550
    • Kim, S.1
  • 13
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S. and Kim H. S., Neural Networks and Genetic Algorithm Approach for Nonlinear Evaporation and Evapotranspiration Modeling, Journal of Hydrology, 351, 299-317 (2008
    • (2008) Journal of Hydrology , vol.351 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 15
    • 77955723644 scopus 로고
    • Ministry of Construction and Transportation, Collection and Fundamental Analysis of Hydrologic Data of the Representative Basin, South Korea
    • Ministry of Construction and Transportation, Collection and Fundamental Analysis of Hydrologic Data of the Representative Basin. International Hydrological Program (IHP), South Korea (1982-2006)
    • (1982) International Hydrological Program (IHP)
  • 16
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part 1 - A discussion of principles
    • Nash J. E. and Sutcliffe J. V., River Flow Forecasting through Conceptual Models, Part 1 - A Discussion of Principles, Journal of Hydrology, 10 (3), 282-290 (1970)
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 18
    • 53249100204 scopus 로고    scopus 로고
    • Spatial analysis neural network model and its applications to hydrological and environmental data
    • Dept. of Civil Engineering, Colorado State University, Fort Collins, CO, USA
    • Shin H. S. and Salas J. D., Spatial Analysis Neural Network Model and Its Applications to Hydrological and Environmental Data. Water Resources Paper, No. 109, Dept. of Civil Engineering, Colorado State University, Fort Collins, CO, USA (1997)
    • (1997) Water Resources Paper, No. 109
    • Shin, H.S.1    Salas, J.D.2
  • 20
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • DOI 10.1061/(ASCE)1084-0699(1998)3:1(26)
    • Thirumalaiah K. and Deo M. C., River Stage Forecasting using Artificial Neural Networks, Journal of Hydrologic Engineering, 3 (1), 26-32 (1998) (Pubitemid 28192147)
    • (1998) Journal of Hydrologic Engineering , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.