-
1
-
-
84986665179
-
-
J. H. Coombs, J. K. Gimzewski, B. Reihl, J. K. Sass, and R. R. Schlittler, J. Microsc. 152, 325 (1988).
-
(1988)
J. Microsc.
, vol.152
, pp. 325
-
-
Coombs, J.H.1
Gimzewski, J.K.2
Reihl, B.3
Sass, J.K.4
Schlittler, R.R.5
-
3
-
-
0027690998
-
-
10.1126/science.262.5138.1425
-
R. Berndt, R. Gaisch, J. K. Gimzewski, B. Reihl, R. R. Schlittler, W. D. Schneider, and M. Tschudy, Science 262, 1425 (1993). 10.1126/science.262.5138. 1425
-
(1993)
Science
, vol.262
, pp. 1425
-
-
Berndt, R.1
Gaisch, R.2
Gimzewski, J.K.3
Reihl, B.4
Schlittler, R.R.5
Schneider, W.D.6
Tschudy, M.7
-
8
-
-
0037462546
-
-
10.1126/science.1078675
-
X. H. Qiu, G. V. Nazin, and W. Ho, Science 299, 542 (2003). 10.1126/science.1078675
-
(2003)
Science
, vol.299
, pp. 542
-
-
Qiu, X.H.1
Nazin, G.V.2
Ho, W.3
-
9
-
-
1842531831
-
-
10.1103/PhysRevLett.92.086801
-
Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, and S. Mashiko, Phys. Rev. Lett. 92, 086801 (2004). 10.1103/PhysRevLett.92.086801
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 086801
-
-
Dong, Z.-C.1
Guo, X.-L.2
Trifonov, A.S.3
Dorozhkin, P.S.4
Miki, K.5
Kimura, K.6
Yokoyama, S.7
Mashiko, S.8
-
10
-
-
28844437518
-
-
10.1103/PhysRevLett.95.196102
-
E. Čavar, M.-C. Blüm, M. Pivetta, F. Patthey, M. Chergui, and W.-D. Schneider, Phys. Rev. Lett. 95, 196102 (2005). 10.1103/PhysRevLett.95. 196102
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 196102
-
-
Čavar, E.1
Blüm, M.-C.2
Pivetta, M.3
Patthey, F.4
Chergui, M.5
Schneider, W.-D.6
-
11
-
-
44349083076
-
-
10.1103/PhysRevB.77.205430
-
S. W. Wu, G. V. Nazin, and W. Ho, Phys. Rev. B 77, 205430 (2008). 10.1103/PhysRevB.77.205430
-
(2008)
Phys. Rev. B
, vol.77
, pp. 205430
-
-
Wu, S.W.1
Nazin, G.V.2
Ho, W.3
-
12
-
-
28144457346
-
-
10.1021/nl0516005
-
M. S. Gudiksen, K. N. Maher, L. Ouyang, and H. Park, Nano Lett. 5, 2257 (2005). 10.1021/nl0516005
-
(2005)
Nano Lett.
, vol.5
, pp. 2257
-
-
Gudiksen, M.S.1
Maher, K.N.2
Ouyang, L.3
Park, H.4
-
13
-
-
54749087430
-
-
10.1088/0953-8984/20/37/374118
-
D. R. Ward, G. D. Scott, Z. K. Keane, N. J. Halas, and D. Natelson, J. Phys.: Condens. Matter 20, 374118 (2008). 10.1088/0953-8984/20/37/374118
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 374118
-
-
Ward, D.R.1
Scott, G.D.2
Keane, Z.K.3
Halas, N.J.4
Natelson, D.5
-
14
-
-
0037116225
-
-
10.1103/PhysRevB.66.245306
-
J. Buker and G. Kirczenow, Phys. Rev. B 66, 245306 (2002). 10.1103/PhysRevB.66.245306
-
(2002)
Phys. Rev. B
, vol.66
, pp. 245306
-
-
Buker, J.1
Kirczenow, G.2
-
15
-
-
0031037501
-
-
10.1126/science.275.5303.1102
-
S. Nie and S. R. Emory, Science 275, 1102 (1997). 10.1126/science.275. 5303.1102
-
(1997)
Science
, vol.275
, pp. 1102
-
-
Nie, S.1
Emory, S.R.2
-
16
-
-
29744465481
-
-
10.1103/PhysRevB.72.205338
-
J. Buker and G. Kirczenow, Phys. Rev. B 72, 205338 (2005). 10.1103/PhysRevB.72.205338
-
(2005)
Phys. Rev. B
, vol.72
, pp. 205338
-
-
Buker, J.1
Kirczenow, G.2
-
17
-
-
52949153618
-
-
10.1103/PhysRevB.78.125107
-
J. Buker and G. Kirczenow, Phys. Rev. B 78, 125107 (2008). 10.1103/PhysRevB.78.125107
-
(2008)
Phys. Rev. B
, vol.78
, pp. 125107
-
-
Buker, J.1
Kirczenow, G.2
-
18
-
-
77955757122
-
-
Technically speaking, the thick solid lines represent transitions between different many-electron states. However, in a noninteracting single-electron picture, the lines indeed correspond to different molecular orbitals.
-
Technically speaking, the thick solid lines represent transitions between different many-electron states. However, in a noninteracting single-electron picture, the lines indeed correspond to different molecular orbitals.
-
-
-
-
19
-
-
0001504284
-
-
10.1103/PhysRevB.44.1646
-
C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991). 10.1103/PhysRevB.44. 1646
-
(1991)
Phys. Rev. B
, vol.44
, pp. 1646
-
-
Beenakker, C.W.J.1
-
23
-
-
0346598275
-
-
10.1103/PhysRevB.68.205324
-
S. Braig and K. Flensberg, Phys. Rev. B 68, 205324 (2003). 10.1103/PhysRevB.68.205324
-
(2003)
Phys. Rev. B
, vol.68
, pp. 205324
-
-
Braig, S.1
Flensberg, K.2
-
25
-
-
12444286752
-
-
10.1103/PhysRevB.70.195107
-
J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Phys. Rev. B 70, 195107 (2004). 10.1103/PhysRevB.70.195107
-
(2004)
Phys. Rev. B
, vol.70
, pp. 195107
-
-
Koch, J.1
Von Oppen, F.2
Oreg, Y.3
Sela, E.4
-
27
-
-
34547604492
-
-
10.1103/PhysRevB.76.045435
-
Connie Te-ching Chang, J. P. Sethna, A. N. Pasupathy, J. Park, D. C. Ralph, and P. L. McEuen, Phys. Rev. B 76, 045435 (2007). 10.1103/PhysRevB.76. 045435
-
(2007)
Phys. Rev. B
, vol.76
, pp. 045435
-
-
Te-Ching Chang, C.1
Sethna, J.P.2
Pasupathy, A.N.3
Park, J.4
Ralph, D.C.5
McEuen, P.L.6
-
28
-
-
49249099755
-
-
10.1021/nn800170h
-
J. S. Seldenthuis, H. S. J. van der Zant, M. A. Ratner, and J. M. Thijssen, ACS Nano 2, 1445 (2008). 10.1021/nn800170h
-
(2008)
ACS Nano
, vol.2
, pp. 1445
-
-
Seldenthuis, J.S.1
Van Der Zant, H.S.J.2
Ratner, M.A.3
Thijssen, J.M.4
-
29
-
-
77955757853
-
-
Assuming a symmetric distribution of the bias voltage over the leads, the bias voltage coupling of the molecule is given by α= 1 2 CS - CD CS + CD, where CS and CD are the capacitances to the source and drain electrode, respectively.
-
Assuming a symmetric distribution of the bias voltage over the leads, the bias voltage coupling of the molecule is given by α = 1 2 C S - C D C S + C D, where C S and C D are the capacitances to the source and drain electrode, respectively.
-
-
-
-
30
-
-
0000726572
-
-
10.1002/(SICI)1097-461X(2000)77:1<383::AID-QUA38>3.0.CO;2-0
-
P. T. Ruhoff and M. A. Ratner, Int. J. Quantum Chem. 77, 383 (2000). 10.1002/(SICI)1097-461X(2000)77:1<383::AID-QUA38>3.0.CO;2-0
-
(2000)
Int. J. Quantum Chem.
, vol.77
, pp. 383
-
-
Ruhoff, P.T.1
Ratner, M.A.2
-
32
-
-
77955741226
-
-
All quantum chemistry calculations have been performed with the AMSTERDAM DENSITY-FUNCTIONAL package, (Refs.) using the local-density approximation exchange-correlation potential and the analytical-second-derivatives module for the vibrational modes (Ref.). A triple- ζ doubly polarized basis set has been used for the ligands and the central ion, whereas a double- ζ singly polarized basis was used for the rest of the molecule.
-
All quantum chemistry calculations have been performed with the AMSTERDAM DENSITY-FUNCTIONAL package, (Refs.) using the local-density approximation exchange-correlation potential and the analytical-second-derivatives module for the vibrational modes (Ref.). A triple- ζ doubly polarized basis set has been used for the ligands and the central ion, whereas a double- ζ singly polarized basis was used for the rest of the molecule.
-
-
-
-
34
-
-
77955748689
-
-
) 2 (Ref.), where n is the number of vibrational modes (213 in the case of ZnEtioI and 516 in the case of H2 TBPP) and l is the number of vibrational quanta. Memory constraints limit the number of vibrational quanta that can currently be taken into account to at most 2. This is enough to produce all the peaks in the spectra but the omission of the vast number of low-intensity higher-order transitions causes the lower-energy part of the spectrum to be under-represented.
-
) 2 (Ref.), where n is the number of vibrational modes (213 in the case of ZnEtioI and 516 in the case of H 2 TBPP) and l is the number of vibrational quanta. Memory constraints limit the number of vibrational quanta that can currently be taken into account to at most 2. This is enough to produce all the peaks in the spectra but the omission of the vast number of low-intensity higher-order transitions causes the lower-energy part of the spectrum to be under-represented.
-
-
-
-
35
-
-
77955744890
-
-
The dimensionless electron-phonon coupling of vibrational mode i is defined to be λi = ki √ ωi 2 (Refs.), where ki is the mass-weighted contribution of the mode to the displacement of the nuclei due to the transition and ωi is the frequency.
-
The dimensionless electron-phonon coupling of vibrational mode i is defined to be λ i = k i √ ω i 2 (Refs.), where k i is the mass-weighted contribution of the mode to the displacement of the nuclei due to the transition and ω i is the frequency.
-
-
-
-
37
-
-
77955738985
-
-
(Ref.) also observe electroluminescence at bias voltages below the photon energy. This is most likely due to higher order processes, which are not taken into account in the rate-equation formalism (Ref.).
-
Dong (Ref.) also observe electroluminescence at bias voltages below the photon energy. This is most likely due to higher order processes, which are not taken into account in the rate-equation formalism (Ref.).
-
-
-
Dong1
-
38
-
-
77955737926
-
-
The current dependence of the electroluminescence of H2 TBPP in a different experiment is reported in Ref.. This measurement shows a linear current dependence at positive bias. For negative bias voltages, no current dependence is shown.
-
The current dependence of the electroluminescence of H 2 TBPP in a different experiment is reported in Ref.. This measurement shows a linear current dependence at positive bias. For negative bias voltages, no current dependence is shown.
-
-
-
-
39
-
-
0032221816
-
-
10.1007/s002140050353
-
C. F. Guerra, J. G. Snijders, G. te Velde, and E. J. Baerends, Theor. Chem. Acc. 99, 391 (1998). 10.1007/s002140050353
-
(1998)
Theor. Chem. Acc.
, vol.99
, pp. 391
-
-
Guerra, C.F.1
Snijders, J.G.2
Te Velde, G.3
Baerends, E.J.4
-
40
-
-
20644438873
-
-
10.1002/jcc.1056
-
G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931 (2001). 10.1002/jcc.1056
-
(2001)
J. Comput. Chem.
, vol.22
, pp. 931
-
-
Te Velde, G.1
Bickelhaupt, F.M.2
Baerends, E.J.3
Guerra, C.F.4
Van Gisbergen, S.J.A.5
Snijders, J.G.6
Ziegler, T.7
-
43
-
-
14044279789
-
-
10.1103/PhysRevB.70.233204
-
X.-L. Guo, Z.-C. Dong, A. S. Trifonov, K. Miki, Y. Wakayama, D. Fujita, K. Kimura, S. Yokoyama, and S. Mashiko, Phys. Rev. B 70, 233204 (2004). 10.1103/PhysRevB.70.233204
-
(2004)
Phys. Rev. B
, vol.70
, pp. 233204
-
-
Guo, X.-L.1
Dong, Z.-C.2
Trifonov, A.S.3
Miki, K.4
Wakayama, Y.5
Fujita, D.6
Kimura, K.7
Yokoyama, S.8
Mashiko, S.9
|