메뉴 건너뛰기




Volumn 59, Issue 9, 2010, Pages 2250-2260

Distributed unsupervised Gaussian mixture learning for density estimation in sensor networks

Author keywords

Data clustering; density estimation; expectation maximization (EM) algorithm; sensor networks; unsupervised learning

Indexed keywords

DATA CLUSTERING; DENSITY ESTIMATION; DIFFUSION SPEED; DISTRIBUTED AVERAGING; DISTRIBUTED TARGET; ENVIRONMENTAL MONITORING; EXPECTATION MAXIMIZATION; EXPECTATION-MAXIMIZATION ALGORITHMS; GAUSSIAN MIXTURE MODEL; GAUSSIAN MIXTURES; MODEL ORDER; NEIGHBORING NODES; SIMULATION RESULT; SUFFICIENT STATISTICS;

EID: 77955712146     PISSN: 00189456     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIM.2009.2036348     Document Type: Article
Times cited : (19)

References (38)
  • 2
    • 0042965713 scopus 로고    scopus 로고
    • Distributed mining of classification rules
    • Jan.
    • C. Vincent and B. Wüthrich, "Distributed mining of classification rules," Knowl. Inf. Syst., vol.4, no.1, pp. 1-30, Jan. 2002.
    • (2002) Knowl. Inf. Syst. , vol.4 , Issue.1 , pp. 1-30
    • Vincent, C.1    Wüthrich, B.2
  • 3
    • 10044279537 scopus 로고    scopus 로고
    • Association rule mining in peer-to-peer systems
    • Dec.
    • R. Wolff and A. Schuster, "Association rule mining in peer-to-peer systems," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol.34, no.6, pp. 2426-2438, Dec. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.34 , Issue.6 , pp. 2426-2438
    • Wolff, R.1    Schuster, A.2
  • 5
    • 85132067551 scopus 로고    scopus 로고
    • Collective mining of Bayesian networks from distributed heterogeneous data
    • Mar.
    • R. Chen, K. Sivakumar, and H. Kargupta, "Collective mining of Bayesian networks from distributed heterogeneous data," Knowl. Inf. Syst., vol.6, no.2, pp. 164-187, Mar. 2004.
    • (2004) Knowl. Inf. Syst. , vol.6 , Issue.2 , pp. 164-187
    • Chen, R.1    Sivakumar, K.2    Kargupta, H.3
  • 6
    • 33746371214 scopus 로고    scopus 로고
    • A kernel-based learning approach to ad hoc sensor network localization
    • Aug.
    • X. Nguyen, M. I. Jordan, and B. Sinopoli, "A kernel-based learning approach to ad hoc sensor network localization," ACM Trans. Sensor Netw., vol.1, no.1, pp. 134-152, Aug. 2005.
    • (2005) ACM Trans. Sensor Netw. , vol.1 , Issue.1 , pp. 134-152
    • Nguyen, X.1    Jordan, M.I.2    Sinopoli, B.3
  • 7
    • 3042699000 scopus 로고    scopus 로고
    • A learning-theory approach to sensor networks
    • Oct.
    • S. Simic, "A learning-theory approach to sensor networks," Pervasive Comput., vol.2, no.4, pp. 44-49, Oct. 2003.
    • (2003) Pervasive Comput. , vol.2 , Issue.4 , pp. 44-49
    • Simic, S.1
  • 8
    • 33744942641 scopus 로고    scopus 로고
    • A robust architecture for inference in distributed sensor networks
    • M. Paskin, C. Guestrin, and J. Mc Fadden, "A robust architecture for inference in distributed sensor networks," in Proc. Int. Conf. IPSN, 2005, pp. 55-62.
    • (2005) Proc. Int. Conf. IPSN , pp. 55-62
    • Paskin, M.1    Guestrin, C.2    Mc Fadden, J.3
  • 9
    • 32944461175 scopus 로고    scopus 로고
    • Robust probabilistic inference in distributed systems
    • M. Paskin and C. Guestrin, "Robust probabilistic inference in distributed systems," in Proc. Uncertainty Artif. Intell., 2004, pp. 436-445.
    • (2004) Proc. Uncertainty Artif. Intell. , pp. 436-445
    • Paskin, M.1    Guestrin, C.2
  • 10
    • 77950315467 scopus 로고    scopus 로고
    • A distributed variational Bayesian algorithm for density estimation in sensor networks
    • B. Safarinejadian, M. B. Menhaj, and M. Karrari, "A distributed variational Bayesian algorithm for density estimation in sensor networks," IEICE Trans. Inf. Syst., vol.E92-D, no.5, pp. 1037-1048, 2009.
    • (2009) IEICE Trans. Inf. Syst. , vol.E92-D , Issue.5 , pp. 1037-1048
    • Safarinejadian, B.1    Menhaj, M.B.2    Karrari, M.3
  • 11
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood estimation from incomplete data via the EM algorithm," J. R. Stat. Soc., Ser. B, vol.39, no.1, pp. 1-38, 1977.
    • (1977) J. R. Stat. Soc., Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 12
    • 13644262858 scopus 로고    scopus 로고
    • Accelerating em clustering to find highquality solutions
    • Feb.
    • C. Ordonez and E. Omiecinski, "Accelerating EM clustering to find highquality solutions," Knowl. Inf. Syst., vol.7, no.2, pp. 135-157, Feb. 2005.
    • (2005) Knowl. Inf. Syst. , vol.7 , Issue.2 , pp. 135-157
    • Ordonez, C.1    Omiecinski, E.2
  • 14
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Feb.
    • S. Roweis and Z. Ghahramani, "A unifying review of linear Gaussian models," Neural Comput., vol.11, no.2, pp. 305-345, Feb. 1999.
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 15
    • 0002788893 scopus 로고    scopus 로고
    • A view of the em algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan, Ed. Cambridge, MA: MIT Press
    • R. Neal and G. Hinton, "A view of the EM algorithm that justifies incremental, sparse, and other variants," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999, pp. 355-368.
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 16
    • 0037664294 scopus 로고    scopus 로고
    • FREM: Fast and robust em clustering for large data sets
    • C. Ordonez and E. Omiecinski, "FREM: Fast and robust EM clustering for large data sets," in Proc. ACM CIKM Conf., 2002, pp. 590-599.
    • (2002) Proc. ACM CIKM Conf. , pp. 590-599
    • Ordonez, C.1    Omiecinski, E.2
  • 18
    • 0042164384 scopus 로고    scopus 로고
    • Distributed em algorithms for density estimation and clustering in sensor networks
    • Aug.
    • R. D. Nowak, "Distributed EM algorithms for density estimation and clustering in sensor networks," IEEE Trans. Signal Process., vol.51, no.8, pp. 2245-2253, Aug. 2003.
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.8 , pp. 2245-2253
    • Nowak, R.D.1
  • 19
    • 63049089055 scopus 로고    scopus 로고
    • Distributed data clustering using expectation maximization algorithm
    • B. Safarinejadian, M. B. Menhaj, and M. Karrari, "Distributed data clustering using expectation maximization algorithm," J. Appl. Sci., vol.9, no.5, pp. 854-864, 2009.
    • (2009) J. Appl. Sci. , vol.9 , Issue.5 , pp. 854-864
    • Safarinejadian, B.1    Menhaj, M.B.2    Karrari, M.3
  • 20
    • 77953538371 scopus 로고    scopus 로고
    • A distributed em algorithm to estimate the parameters of a finite mixture of components
    • DOI: 10.1007/s10115-009-0218-y, to be published
    • B. Safarinejadian, M. B. Menhaj, and M. Karrari, "A distributed EM algorithm to estimate the parameters of a finite mixture of components," Knowl. Inf. Syst., 2009, DOI: 10.1007/s10115-009-0218-y, to be published.
    • (2009) Knowl. Inf. Syst.
    • Safarinejadian, B.1    Menhaj, M.B.2    Karrari, M.3
  • 21
    • 19744365747 scopus 로고    scopus 로고
    • Privacy-preserving clustering with distributed em mixture modeling
    • Jul.
    • X. Lin, C. Clifton, and M. Zhu, "Privacy-preserving clustering with distributed EM mixture modeling," Knowl. Inf. Syst., vol.8, no.1, pp. 68-81, Jul. 2005.
    • (2005) Knowl. Inf. Syst. , vol.8 , Issue.1 , pp. 68-81
    • Lin, X.1    Clifton, C.2    Zhu, M.3
  • 22
    • 25844517631 scopus 로고    scopus 로고
    • Gossip algorithms: Design, analysis and applications
    • S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, "Gossip algorithms: Design, analysis and applications," in Proc. IEEE Infocom, 2005, pp. 1653-1664.
    • (2005) Proc. IEEE Infocom , pp. 1653-1664
    • Boyd, S.1    Ghosh, A.2    Prabhakar, B.3    Shah, D.4
  • 23
    • 4544327623 scopus 로고    scopus 로고
    • From epidemics to distributed computing
    • May
    • P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie, "From epidemics to distributed computing," Computer, vol.37, no.5, pp. 60- 67, May 2004.
    • (2004) Computer , vol.37 , Issue.5 , pp. 60-67
    • Eugster, P.1    Guerraoui, R.2    Kermarrec, A.-M.3    Massoulie, L.4
  • 24
    • 33745478180 scopus 로고    scopus 로고
    • Computing aggregate information using gossip
    • D. Kemp, A. Dobra, and J. Gehrke, "Computing aggregate information using gossip," in Proc. FoCS, 2003, pp. 482-491.
    • (2003) Proc. FoCS , pp. 482-491
    • Kemp, D.1    Dobra, A.2    Gehrke, J.3
  • 26
    • 0009038636 scopus 로고    scopus 로고
    • Inference in modelbased cluster analysis
    • H. Bensmail, G. Celeux, A. Raftery, and C. Robert, "Inference in modelbased cluster analysis," Stat. Comput., vol.7, no.1, pp. 1-10, 1997.
    • (1997) Stat. Comput. , vol.7 , Issue.1 , pp. 1-10
    • Bensmail, H.1    Celeux, G.2    Raftery, A.3    Robert, C.4
  • 27
    • 0000391986 scopus 로고    scopus 로고
    • Testing for mixtures: A Bayesian entropic approach
    • J. Bernardo, J. Berger, A. Dawid, and F. Smith, Ed.s
    • K. Mengersen and C. Robert, "Testing for mixtures: A Bayesian entropic approach," in Proc. 5th Valencia Int. Meeting Bayesian Stat., J. Bernardo, J. Berger, A. Dawid, and F. Smith, Ed.s, 1996, pp. 255-276.
    • (1996) Proc. 5th Valencia Int. Meeting Bayesian Stat. , pp. 255-276
    • Mengersen, K.1    Robert, C.2
  • 28
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • K. Roeder and L. Wasserman, "Practical Bayesian density estimation using mixtures of normals," J. Amer. Stat. Assoc., vol.92, pp. 894-902, 1997.
    • (1997) J. Amer. Stat. Assoc. , vol.92 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 30
    • 79955803023 scopus 로고    scopus 로고
    • The infinite Gaussian mixture model
    • S. Solla, T. Leen, and K.-R. Muller, Eds. Cambridge, MA: MIT Press
    • C. Rasmussen, "The infinite Gaussian mixture model," in Advances in Neural Information Processing Systems 12, S. Solla, T. Leen, and K.-R. Muller, Eds. Cambridge, MA: MIT Press, 2000, pp. 554-560.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 554-560
    • Rasmussen, C.1
  • 31
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with unknown number of components
    • S. Richardson and P. Green, "On Bayesian analysis of mixtures with unknown number of components," J. R. Stat. Soc., Ser. B, vol.59, pp. 731- 792, 1997.
    • (1997) J. R. Stat. Soc., Ser. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 32
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Apr.
    • C. Wallace and D. Dowe, "Minimum message length and Kolmogorov complexity," Comput. J., vol.42, no.4, pp. 270-283, Apr. 1999.
    • (1999) Comput. J. , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.1    Dowe, D.2
  • 33
    • 0000208682 scopus 로고
    • Estimation and inference via compact coding
    • C. Wallace and P. Freeman, "Estimation and inference via compact coding," J. R. Stat. Soc., Ser. B, vol.49, no.3, pp. 241-252, 1987.
    • (1987) J. R. Stat. Soc., Ser. B , vol.49 , Issue.3 , pp. 241-252
    • Wallace, C.1    Freeman, P.2
  • 36
  • 37
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besg, "On the statistical analysis of dirty pictures," J. R. Stat. Soc., Ser. B Methodol., vol.48, no.3, pp. 259-302, 1986.
    • (1986) J. R. Stat. Soc., Ser. B Methodol. , vol.48 , Issue.3 , pp. 259-302
    • Besg, J.1
  • 38
    • 0033336275 scopus 로고    scopus 로고
    • Learning mixtures of Gaussians
    • FOCS, Washington, DC
    • S. Dasgupta, "Learning mixtures of Gaussians," in Proc. 40th Annu. Symp. FOCS, Washington, DC, 1999, p. 634.
    • (1999) Proc. 40th Annu. Symp. , pp. 634
    • Dasgupta, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.