메뉴 건너뛰기




Volumn 23, Issue 3, 2010, Pages 267-292

A distributed EM algorithm to estimate the parameters of a finite mixture of components

Author keywords

Data clustering; Density estimation; Distributed data mining; EM algorithm

Indexed keywords

DATA MINING; FREE ENERGY; MAXIMUM PRINCIPLE; MIXTURES; PARAMETER ESTIMATION; STATISTICAL PHYSICS;

EID: 77953538371     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0218-y     Document Type: Article
Times cited : (26)

References (37)
  • 1
    • 47249144374 scopus 로고    scopus 로고
    • Clustering multidimensional sequences in spatial and temporal databases
    • Assent I, Krieger R, Glavic B (2008) Clustering multidimensional sequences in spatial and temporal databases. Knowl Inf Syst 16: 29-51.
    • (2008) Knowl Inf Syst , vol.16 , pp. 29-51
    • Assent, I.1    Krieger, R.2    Glavic, B.3
  • 2
    • 0000582521 scopus 로고
    • Statistical analysis of non-lattice data
    • Besag J (1975) Statistical analysis of non-lattice data. Statistician 24(3): 79-195.
    • (1975) Statistician , vol.24 , Issue.3 , pp. 79-195
    • Besag, J.1
  • 3
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B (Methodological) 48(3): 259-302.
    • (1986) J R Stat Soc B (Methodological) , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 5
    • 85132067551 scopus 로고    scopus 로고
    • Collective mining of Bayesian networks from distributed heterogeneous data
    • Chen R, Sivakumar K, Kargupta H (2004) Collective mining of Bayesian networks from distributed heterogeneous data. Knowl Inf Syst 6: 164-187.
    • (2004) Knowl Inf Syst , vol.6 , pp. 164-187
    • Chen, R.1    Sivakumar, K.2    Kargupta, H.3
  • 6
    • 0033336275 scopus 로고    scopus 로고
    • Dasgupta S (1999) Learning mixtures of Gaussians. In: Proceedings of the 40th annual symposium on foundations of computer science. IEEE Computer Society, New York, 17-19 October, pp 634-644.
  • 7
    • 33947403146 scopus 로고    scopus 로고
    • Distributed data mining in peer-to-peer networks
    • Datta S, Bhaduri K, Giannella C et al (2006) Distributed data mining in peer-to-peer networks. IEEE Internet Comput 10: 18-26.
    • (2006) IEEE Internet Comput , vol.10 , pp. 18-26
    • Datta, S.1    Bhaduri, K.2    Giannella, C.3
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood estimation from incomplete data via the em algorithm
    • Dempster A, Laird N, Rubin D (1977) Maximum likelihood estimation from incomplete data via the em algorithm. J R Stat Soc Ser B 39: 1-38.
    • (1977) J R Stat Soc Ser B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 9
    • 77953538692 scopus 로고    scopus 로고
    • Dutta S, Gianella C, Kargupta H (2005) K-means clustering over peer-to-peer networks. In: 8th international workshop on high performance and distributed mining, SIAM international conference on data mining.
  • 12
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modeling of gene expression data from microarray experiments
    • Ghosh D, Chinnaiyan AM (2002) Mixture modeling of gene expression data from microarray experiments. Bioinformatics 18: 275-286.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 13
    • 77953540318 scopus 로고    scopus 로고
    • Giannella C, Dutta H, Mukherjee S et al (2006) Efficient kernel density estimation over distributed data. In: 9th international workshop on high performance and distributed mining, SIAM international conference on data mining.
  • 14
    • 34248670415 scopus 로고    scopus 로고
    • Non-redundant data clustering
    • Gondek D, Hofmann T (2007) Non-redundant data clustering. Knowl Inf Syst 12: 1-24.
    • (2007) Knowl Inf Syst , vol.12 , pp. 1-24
    • Gondek, D.1    Hofmann, T.2
  • 16
    • 85132256511 scopus 로고    scopus 로고
    • A general approach to clustering in large databases with noise
    • Hinnerburge D, Keim DA (2003) A general approach to clustering in large databases with noise. Knowl Inf Syst 5: 387-415.
    • (2003) Knowl Inf Syst , vol.5 , pp. 387-415
    • Hinnerburge, D.1    Keim, D.A.2
  • 17
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 16(11): 1370-1386.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , Issue.11 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 18
    • 77953544388 scopus 로고    scopus 로고
    • Kargupta H, Kamath C, Chan P (2000) Distributed and parallel data mining: emergence, growth, and future directions. Advances in distributed and parallel knowledge discovery, AAAI/MIT Press, Cambridge, pp 409-416.
  • 19
    • 77953543405 scopus 로고    scopus 로고
    • Kowalczyk W, Vlassis N (2005) Newscast EM. Advances in neural information processing systems, vol 17. MIT Press, Cambridge.
  • 20
    • 19744365747 scopus 로고    scopus 로고
    • Privacy-preserving clustering with distributed EM mixture modeling
    • Lin X, Clifton C, Zhu M (2005) Privacy-preserving clustering with distributed EM mixture modeling. Knowl Inf Syst 8: 68-81.
    • (2005) Knowl Inf Syst , vol.8 , pp. 68-81
    • Lin, X.1    Clifton, C.2    Zhu, M.3
  • 21
    • 0037735771 scopus 로고    scopus 로고
    • Asymptotic convergence rate of the EM algorithm for Gaussian mixtures
    • Ma J, Xu L, Jordan MI (2000) Asymptotic convergence rate of the EM algorithm for Gaussian mixtures. Neural Comput 12: 2881-2907.
    • (2000) Neural Comput , vol.12 , pp. 2881-2907
    • Ma, J.1    Xu, L.2    Jordan, M.I.3
  • 22
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan GJ, Bean RW, Peel D (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18: 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 24
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan (Ed.), Cambridge: MIT Press
    • Neal R, Hinton G (1999) A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan MI(eds) Learning in graphical models. MIT Press, Cambridge, pp 355-368.
    • (1999) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 25
    • 0042164384 scopus 로고    scopus 로고
    • Distributed EM algorithms for density estimation and clustering in sensor networks
    • Nowak RD (2003) Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans Signal Process 51: 2245-2253.
    • (2003) IEEE Trans Signal Process , vol.51 , pp. 2245-2253
    • Nowak, R.D.1
  • 26
    • 0037664294 scopus 로고    scopus 로고
    • Ordonez C, Omiecinski E (2002) FREM: fast and robust EM clustering for large data sets. In: Proceedings of the ACM CIKM conference, pp 590-599.
  • 27
    • 13644262858 scopus 로고    scopus 로고
    • Accelerating EM clustering to find high-quality solutions
    • Ordonez C, Omiecinski E (2005) Accelerating EM clustering to find high-quality solutions. Knowl Inf Syst 7: 135-157.
    • (2005) Knowl Inf Syst , vol.7 , pp. 135-157
    • Ordonez, C.1    Omiecinski, E.2
  • 28
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis S, Ghahramani Z (1999) A unifying review of linear Gaussian models. Neural Comput 11: 305-345.
    • (1999) Neural Comput , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 29
    • 0035575419 scopus 로고    scopus 로고
    • Accelerating EM for large databases
    • Thiesson B, Meek C, Heckerman D (2001) Accelerating EM for large databases. Mach Learn 45: 279-299.
    • (2001) Mach Learn , vol.45 , pp. 279-299
    • Thiesson, B.1    Meek, C.2    Heckerman, D.3
  • 30
    • 77953541899 scopus 로고    scopus 로고
    • Verbeek JJ, Vlassis N, Nunnink JRJ (2003) A variational EM approach for large-scale mixture modeling. In: Proceedings of 8th annual conference of the advanced school of computing and imaging. Heijen, The Netherlands.
  • 31
    • 0042965713 scopus 로고    scopus 로고
    • Distributed mining of classification rules
    • Vincent C, Wüthrich B (2002) Distributed mining of classification rules. Knowl Inf Syst 4: 1-30.
    • (2002) Knowl Inf Syst , vol.4 , pp. 1-30
    • Vincent, C.1    Wüthrich, B.2
  • 32
    • 10044279537 scopus 로고    scopus 로고
    • Association rule mining in peer-to-peer systems
    • Wolff R, Schuster A (2004) Association rule mining in peer-to-peer systems. IEEE Trans Syst Man Cybern B 34: 2426-2438.
    • (2004) IEEE Trans Syst Man Cybern B , vol.34 , pp. 2426-2438
    • Wolff, R.1    Schuster, A.2
  • 33
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • Wu X, Kumar V, Quinlan J et al (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14: 1-37.
    • (2008) Knowl Inf Syst , vol.14 , pp. 1-37
    • Wu, X.1    Kumar, V.2    Quinlan, J.3
  • 34
    • 60749127303 scopus 로고    scopus 로고
    • Xia Y, Zhang C, Weng S et al (2005) Fault-tolerant EM algorithm for GMM in sensor networks. In: Proceedings of the 2005 international conference on data mining, Las Vegas, Nevada, USA, pp 166-172.
  • 35
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu L, Jordan MI (1996) On convergence properties of the EM algorithm for Gaussian mixtures. Neural Comput 8: 129-151.
    • (1996) Neural Comput , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 36
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformation for gene expression data
    • Yeung KY, Fraley C, Murua A et al (2001) Model-based clustering and data transformation for gene expression data. Bioinformatics 17: 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3
  • 37
    • 0001375902 scopus 로고
    • Mixtures of distributions and the EM algorithm
    • Yuille A, Stolorz P, Utans J (1994) Mixtures of distributions and the EM algorithm. Neural Comput 6(1): 334-340.
    • (1994) Neural Comput , vol.6 , Issue.1 , pp. 334-340
    • Yuille, A.1    Stolorz, P.2    Utans, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.