메뉴 건너뛰기




Volumn 217, Issue 2, 2010, Pages 782-789

A study on the convergence of homotopy analysis method

Author keywords

Convergence; Homotopy analysis method; Maximum absolute truncated error; Series solution

Indexed keywords

ALTERNATIVE FRAMEWORK; CONVERGENCE; CONVERGENCE ANALYSIS; CONVERGENCE RESULTS; HOMOTOPIES; HOMOTOPY ANALYSIS METHODS; MAXIMUM ABSOLUTE TRUNCATED ERROR; NONLINEAR DIFFERENTIAL EQUATION; NONLINEAR PROBLEMS; SERIES SOLUTIONS; SUFFICIENT CONDITIONS;

EID: 77955658683     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2010.06.017     Document Type: Article
Times cited : (79)

References (33)
  • 2
    • 0000615571 scopus 로고
    • A kind of approximate solution technique which does not depend upon small parameters: A special example
    • S.J. Liao A kind of approximate solution technique which does not depend upon small parameters: a special example Int. J. Nonlinear Mech. 30 1995 371 380
    • (1995) Int. J. Nonlinear Mech. , vol.30 , pp. 371-380
    • Liao, S.J.1
  • 4
    • 0141961626 scopus 로고    scopus 로고
    • On the homotopy analysis method for nonlinear problems
    • S.J. Liao On the homotopy analysis method for nonlinear problems Appl. Math. Comput. 147 2004 499 513
    • (2004) Appl. Math. Comput. , vol.147 , pp. 499-513
    • Liao, S.J.1
  • 5
    • 34848900880 scopus 로고    scopus 로고
    • A general approach to obtain series solutions of nonlinear differential equations
    • S.J. Liao, and Y. Tan A general approach to obtain series solutions of nonlinear differential equations Stud. Appl. Math. 119 2007 297 354
    • (2007) Stud. Appl. Math. , vol.119 , pp. 297-354
    • Liao, S.J.1    Tan, Y.2
  • 6
    • 55549136027 scopus 로고    scopus 로고
    • Notes on the homotopy analysis method: Some definitions and theorems
    • S.J. Liao Notes on the homotopy analysis method: some definitions and theorems Commun. Nonlinear Sci. Numer. Simulat. 14 4 2009 983 997
    • (2009) Commun. Nonlinear Sci. Numer. Simulat. , vol.14 , Issue.4 , pp. 983-997
    • Liao, S.J.1
  • 7
    • 34248519246 scopus 로고    scopus 로고
    • Rotating flow of a third grade fluid in a porous space with hall current
    • T. Hayat, M. Khan, M. Sajid, and S. Asghar Rotating flow of a third grade fluid in a porous space with hall current Nonlinear Dyn. 49 2007 83 91
    • (2007) Nonlinear Dyn. , vol.49 , pp. 83-91
    • Hayat, T.1    Khan, M.2    Sajid, M.3    Asghar, S.4
  • 8
    • 33845432502 scopus 로고    scopus 로고
    • On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder
    • T. Hayat, and M. Sajid On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder Phys. Lett. A 361 4-5 2007 316 322
    • (2007) Phys. Lett. A , vol.361 , Issue.4-5 , pp. 316-322
    • Hayat, T.1    Sajid, M.2
  • 9
    • 34447642165 scopus 로고    scopus 로고
    • Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid
    • T. Hayat, and M. Sajid Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid Int. J. Eng. Sci. 45 2007 393 401
    • (2007) Int. J. Eng. Sci. , vol.45 , pp. 393-401
    • Hayat, T.1    Sajid, M.2
  • 10
    • 33847224443 scopus 로고    scopus 로고
    • Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet
    • M. Sajid, and T. Hayat Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet Int. J. Heat Mass Trans. 50 2007 1723 1736
    • (2007) Int. J. Heat Mass Trans. , vol.50 , pp. 1723-1736
    • Sajid, M.1    Hayat, T.2
  • 11
    • 34347339334 scopus 로고    scopus 로고
    • Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation
    • L. Song, and H.Q. Zhang Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation Phys. Lett. A 367 1-2 2007 88 94
    • (2007) Phys. Lett. A , vol.367 , Issue.1-2 , pp. 88-94
    • Song, L.1    Zhang, H.Q.2
  • 12
    • 34547420243 scopus 로고    scopus 로고
    • An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method
    • M. Yamashita, K. Yabushita, and K. Tsuboi An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method J. Phys. A 40 2007 8403 8416
    • (2007) J. Phys. A , vol.40 , pp. 8403-8416
    • Yamashita, M.1    Yabushita, K.2    Tsuboi, K.3
  • 13
    • 33845601283 scopus 로고    scopus 로고
    • Explicit series solution for the Glauert-jet problem by means of the homotopy analysis method
    • Y. Bouremel Explicit series solution for the Glauert-jet problem by means of the homotopy analysis method Comm. Nonlinear Sci. Numer. Simulat. 12 5 2007 714 724
    • (2007) Comm. Nonlinear Sci. Numer. Simulat. , vol.12 , Issue.5 , pp. 714-724
    • Bouremel, Y.1
  • 14
    • 35348955411 scopus 로고    scopus 로고
    • Nonlinear progressive waves in water of finite depth - An analytic approximation
    • L. Tao, H. Song, and S. Chakrabarti Nonlinear progressive waves in water of finite depth - an analytic approximation Clastal Eng. 54 2007 825 834
    • (2007) Clastal Eng. , vol.54 , pp. 825-834
    • Tao, L.1    Song, H.2    Chakrabarti, S.3
  • 15
    • 35348973440 scopus 로고    scopus 로고
    • Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method
    • A. Bataineh, M. Noorani, and I. Hashim Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method Phys. Lett. A 371 1-2 2007 72 82
    • (2007) Phys. Lett. A , vol.371 , Issue.1-2 , pp. 72-82
    • Bataineh, A.1    Noorani, M.2    Hashim, I.3
  • 16
    • 34548203117 scopus 로고    scopus 로고
    • Applying homotopy analysis method for solving differential-difference equation
    • Z. Wang, L. Zhu, and H. Zhang Applying homotopy analysis method for solving differential-difference equation Phys. Lett. A 369 1-2 2007 77 84
    • (2007) Phys. Lett. A , vol.369 , Issue.1-2 , pp. 77-84
    • Wang, Z.1    Zhu, L.2    Zhang, H.3
  • 17
    • 34247352920 scopus 로고    scopus 로고
    • On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method
    • M. Inc On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method Phys. Lett. A 365 5-6 2007 412 415
    • (2007) Phys. Lett. A , vol.365 , Issue.5-6 , pp. 412-415
    • Inc, M.1
  • 18
    • 38649139314 scopus 로고    scopus 로고
    • Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method
    • S. Abbasbandy Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method Chem. Eng. J. 136 2-3 2008 144 150
    • (2008) Chem. Eng. J. , vol.136 , Issue.2-3 , pp. 144-150
    • Abbasbandy, S.1
  • 19
    • 39749176952 scopus 로고    scopus 로고
    • Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method
    • S. Abbasbandy Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method Nonlinear Dynam. 52 2008 35 40
    • (2008) Nonlinear Dynam. , vol.52 , pp. 35-40
    • Abbasbandy, S.1
  • 20
    • 37549038299 scopus 로고    scopus 로고
    • Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method
    • S. Abbasbandy, and E.J. Parkes Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method Chaos Solitons Fract. 36 3 2008 581 591
    • (2008) Chaos Solitons Fract. , vol.36 , Issue.3 , pp. 581-591
    • Abbasbandy, S.1    Parkes, E.J.2
  • 21
    • 63449128519 scopus 로고    scopus 로고
    • The homotopy analysis method for multiple solutions of nonlinear boundary value problems
    • S. Abbasbandy, E. Magyari, and E. Shivanian The homotopy analysis method for multiple solutions of nonlinear boundary value problems Commun. Nonlinear Sci. Numer. Simulat. 14 9-10 2009 3530 3536
    • (2009) Commun. Nonlinear Sci. Numer. Simulat. , vol.14 , Issue.9-10 , pp. 3530-3536
    • Abbasbandy, S.1    Magyari, E.2    Shivanian, E.3
  • 23
    • 61749099595 scopus 로고    scopus 로고
    • Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method
    • S.J. Liao Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method Nonlinear Anal.: Real World Appl. 10 4 2009 2455 2470
    • (2009) Nonlinear Anal.: Real World Appl. , vol.10 , Issue.4 , pp. 2455-2470
    • Liao, S.J.1
  • 24
    • 64549148828 scopus 로고    scopus 로고
    • Series solutions of nonlinear Riccati differential equations with fractional order
    • J. Cang, Y. Tan, H. Xu, and S.J. Liao Series solutions of nonlinear Riccati differential equations with fractional order Chaos Solitons Fract. 40 1 2009 1 9
    • (2009) Chaos Solitons Fract. , vol.40 , Issue.1 , pp. 1-9
    • Cang, J.1    Tan, Y.2    Xu, H.3    Liao, S.J.4
  • 25
    • 56549119386 scopus 로고    scopus 로고
    • The homotopy analysis method to solve the Burgers-Huxley equation
    • A. Molabahrami, and F. Khani The homotopy analysis method to solve the Burgers-Huxley equation Nonlinear Anal. B: Real World Appl. 10 2 2009 589 600
    • (2009) Nonlinear Anal. B: Real World Appl. , vol.10 , Issue.2 , pp. 589-600
    • Molabahrami, A.1    Khani, F.2
  • 27
    • 56049101374 scopus 로고    scopus 로고
    • A study of homotopy analysis method for limit cycle of van der Pol equation
    • Y.M. Chen, and J.K. Liu A study of homotopy analysis method for limit cycle of van der Pol equation Comm. Nonlinear Sci. Numer. Simulat. 14 5 2009 1816 1821
    • (2009) Comm. Nonlinear Sci. Numer. Simulat. , vol.14 , Issue.5 , pp. 1816-1821
    • Chen, Y.M.1    Liu, J.K.2
  • 28
    • 56049101853 scopus 로고    scopus 로고
    • Analytic solution of natural convection flow of a non-Newtonian fluid between two vertical flat plates using homotopy analysis method
    • Z. Ziabakhsh, and G. Domairry Analytic solution of natural convection flow of a non-Newtonian fluid between two vertical flat plates using homotopy analysis method Comm. Nonlinear Sci. Numer. Simulat. 14 5 2009 1868 1880
    • (2009) Comm. Nonlinear Sci. Numer. Simulat. , vol.14 , Issue.5 , pp. 1868-1880
    • Ziabakhsh, Z.1    Domairry, G.2
  • 29
    • 56049100715 scopus 로고    scopus 로고
    • Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation
    • H. Jafari, and S. Seifi Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation Comm. Nonlinear Sci. Numer. Simulat. 14 5 2009 2006 2012
    • (2009) Comm. Nonlinear Sci. Numer. Simulat. , vol.14 , Issue.5 , pp. 2006-2012
    • Jafari, H.1    Seifi, S.2
  • 30
    • 56049110221 scopus 로고    scopus 로고
    • Adaptation of homotopy analysis method for the numeric analytic solution of Chen system
    • A.K. Alomari, M.S.M. Noorani, and R. Nazar Adaptation of homotopy analysis method for the numeric analytic solution of Chen system Comm. Nonlinear Sci. Numer. Simulat. 14 5 2009 2336 2346
    • (2009) Comm. Nonlinear Sci. Numer. Simulat. , vol.14 , Issue.5 , pp. 2336-2346
    • Alomari, A.K.1    Noorani, M.S.M.2    Nazar, R.3
  • 31
    • 69249202653 scopus 로고    scopus 로고
    • The homotopy analysis method for handling systems of fractional differential equations
    • M. Zurigat, S. Momani, Z. Odibat, and A. Alawneh The homotopy analysis method for handling systems of fractional differential equations Appl. Math. Model. 34 1 2010 24 35
    • (2010) Appl. Math. Model. , vol.34 , Issue.1 , pp. 24-35
    • Zurigat, M.1    Momani, S.2    Odibat, Z.3    Alawneh, A.4
  • 32
    • 70350378693 scopus 로고    scopus 로고
    • A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
    • Z. Odibat, S. Momani, and H. Xu A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations Appl. Math. Model. 34 3 2010 593 600
    • (2010) Appl. Math. Model. , vol.34 , Issue.3 , pp. 593-600
    • Odibat, Z.1    Momani, S.2    Xu, H.3
  • 33
    • 77949917814 scopus 로고    scopus 로고
    • The essence of the homotopy analysis method
    • C. Liu The essence of the homotopy analysis method Appl. Math. Comput. 216 4 2010 1299 1303
    • (2010) Appl. Math. Comput. , vol.216 , Issue.4 , pp. 1299-1303
    • Liu, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.