메뉴 건너뛰기




Volumn 230, Issue 1-2, 2007, Pages 37-49

Approximate importance sampling Monte Carlo for data assimilation

Author keywords

Bayesian analysis; Dimension reduction; Dynamics; Ensemble forecasting; Geostrophy; Hierarchical models; Importance sampling; Particle filter; Sufficient statistic

Indexed keywords

APPROXIMATION THEORY; ATMOSPHERIC PRESSURE; BAYESIAN NETWORKS; MONTE CARLO METHODS; OCEAN STRUCTURES; PROBLEM SOLVING;

EID: 34248674024     PISSN: 01672789     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physd.2006.07.031     Document Type: Article
Times cited : (13)

References (19)
  • 1
    • 0015385037 scopus 로고
    • Nonlinear Bayesian estimation using Gaussian sum approximations
    • Alspach D.L., and Sorenson H.W. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Control AC-17 4 (1972) 439-448
    • (1972) IEEE Trans. Automat. Control , vol.AC-17 , Issue.4 , pp. 439-448
    • Alspach, D.L.1    Sorenson, H.W.2
  • 2
    • 1642360010 scopus 로고    scopus 로고
    • Toward a nonlinear ensemble filter for high-dimensional systems
    • Bengtsson T., Snyder C., and Nychka D. Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108 D24 (2003) 8775. doi:10.1029/2002JD002900
    • (2003) J. Geophys. Res. , vol.108 , Issue.D24 , pp. 8775
    • Bengtsson, T.1    Snyder, C.2    Nychka, D.3
  • 3
    • 33746181251 scopus 로고
    • Likelihood and Bayesian prediction of chaotic systems
    • Berliner L.M. Likelihood and Bayesian prediction of chaotic systems. J. Amer. Statist. Assoc. 86 (1991) 938-952
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 938-952
    • Berliner, L.M.1
  • 4
    • 0042283657 scopus 로고    scopus 로고
    • Monte Carlo based ensemble forecasting
    • Berliner L.M. Monte Carlo based ensemble forecasting. Stat. Comput. 11 (2001) 269-275
    • (2001) Stat. Comput. , vol.11 , pp. 269-275
    • Berliner, L.M.1
  • 5
    • 0041402683 scopus 로고    scopus 로고
    • Bayesian hierarchical modeling of air-sea interaction
    • Berliner L.M., Milliff R.F., and Wikle C.K. Bayesian hierarchical modeling of air-sea interaction. J. Geophys. Res. 108 C4 (2003) 3104. doi:10.1029/2002JC001413
    • (2003) J. Geophys. Res. , vol.108 , Issue.C4 , pp. 3104
    • Berliner, L.M.1    Milliff, R.F.2    Wikle, C.K.3
  • 6
    • 0002209124 scopus 로고    scopus 로고
    • Bayesian methods in the atmospheric sciences
    • Bernardo J.M., et al. (Ed), Oxford University Press
    • Berliner L.M., Royle J.A., Wikle C., and Milliff R.F. Bayesian methods in the atmospheric sciences. In: Bernardo J.M., et al. (Ed). Bayesian Statistics VI (1998), Oxford University Press 83-100
    • (1998) Bayesian Statistics VI , pp. 83-100
    • Berliner, L.M.1    Royle, J.A.2    Wikle, C.3    Milliff, R.F.4
  • 7
    • 0003665481 scopus 로고    scopus 로고
    • Doucet A., de Freitas N., and Gordon N. (Eds), Springer-Verlag, New York
    • In: Doucet A., de Freitas N., and Gordon N. (Eds). Sequential Monte Carlo Methods in Practice (2001), Springer-Verlag, New York
    • (2001) Sequential Monte Carlo Methods in Practice
  • 8
    • 0033942436 scopus 로고    scopus 로고
    • An ensemble Kalman smoother for nonlinear dynamics
    • Evensen G., and van Leeuwen P.J. An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128 (2000) 1852-1867
    • (2000) Mon. Weather Rev. , vol.128 , pp. 1852-1867
    • Evensen, G.1    van Leeuwen, P.J.2
  • 9
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer P.L., and Mitchell H.L. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129 (2001) 123-137
    • (2001) Mon. Weather Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 11
    • 84975888044 scopus 로고
    • Analysis methods for numerical weather prediction
    • Lorenc A.C. Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc. 112 (1986) 1177-1194
    • (1986) Quart. J. Roy. Meteor. Soc. , vol.112 , pp. 1177-1194
    • Lorenc, A.C.1
  • 13
    • 0006198703 scopus 로고    scopus 로고
    • A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador Sea
    • Gatsonis C., et al. (Ed), Springer-Verlag
    • Royle J.A., Berliner L.M., Wikle C.K., and Milliff R. A hierarchical spatial model for constructing wind fields from scatterometer data in the Labrador Sea. In: Gatsonis C., et al. (Ed). Case Studies in Bayesian Statistics (1998), Springer-Verlag 367-382
    • (1998) Case Studies in Bayesian Statistics , pp. 367-382
    • Royle, J.A.1    Berliner, L.M.2    Wikle, C.K.3    Milliff, R.4
  • 15
    • 0142010030 scopus 로고    scopus 로고
    • A variance-minimizing filter for large-scale applications
    • van Leeuwen P.J. A variance-minimizing filter for large-scale applications. Mon. Weather Rev. 131 (2003) 2071-2084
    • (2003) Mon. Weather Rev. , vol.131 , pp. 2071-2084
    • van Leeuwen, P.J.1
  • 17
    • 13444293000 scopus 로고    scopus 로고
    • Combining information across spatial scales
    • Wikle C.K., and Berliner L.M. Combining information across spatial scales. Technometrics 47 (2005) 80-91
    • (2005) Technometrics , vol.47 , pp. 80-91
    • Wikle, C.K.1    Berliner, L.M.2
  • 18
    • 34248651035 scopus 로고    scopus 로고
    • C.K. Wikle, L.M. Berliner, A Bayesian tutorial for data assimilation, 2006 (in review)
  • 19
    • 0038508757 scopus 로고    scopus 로고
    • Hierarchical Bayesian approach to boundary value problems with stochastic boundary conditions
    • Wikle C.K., Berliner L.M., and Milliff R.F. Hierarchical Bayesian approach to boundary value problems with stochastic boundary conditions. Mon. Weather Rev. 131 (2003) 1051-1062
    • (2003) Mon. Weather Rev. , vol.131 , pp. 1051-1062
    • Wikle, C.K.1    Berliner, L.M.2    Milliff, R.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.