-
1
-
-
35148873079
-
-
10.1103/RevModPhys.79.1217
-
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007). 10.1103/RevModPhys.79.1217
-
(2007)
Rev. Mod. Phys.
, vol.79
, pp. 1217
-
-
Hanson, R.1
Kouwenhoven, L.P.2
Petta, J.R.3
Tarucha, S.4
Vandersypen, L.M.K.5
-
2
-
-
0001051084
-
-
10.1103/PhysRevLett.70.1311
-
M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Phys. Rev. Lett. 70, 1311 (1993). 10.1103/PhysRevLett. 70.1311
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 1311
-
-
Field, M.1
Smith, C.G.2
Pepper, M.3
Ritchie, D.A.4
Frost, J.E.F.5
Jones, G.A.C.6
Hasko, D.G.7
-
3
-
-
67650568802
-
-
10.1016/j.ssc.2009.04.040
-
T. Ihn, S. Gustavsson, U. Gasser, B. Küng, T. Müller, R. Schleser, M. Sigrist, I. Shorubalko, R. Leturcq, and K. Ensslin, Solid State Commun. 149, 1419 (2009). 10.1016/j.ssc.2009.04.040
-
(2009)
Solid State Commun.
, vol.149
, pp. 1419
-
-
Ihn, T.1
Gustavsson, S.2
Gasser, U.3
Küng, B.4
Müller, T.5
Schleser, R.6
Sigrist, M.7
Shorubalko, I.8
Leturcq, R.9
Ensslin, K.10
-
4
-
-
3342910553
-
-
10.1038/nature02693
-
J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature (London) 430, 431 (2004). 10.1038/nature02693
-
(2004)
Nature (London)
, vol.430
, pp. 431
-
-
Elzerman, J.M.1
Hanson, R.2
Willems Van Beveren, L.H.3
Witkamp, B.4
Vandersypen, L.M.K.5
Kouwenhoven, L.P.6
-
5
-
-
70449427331
-
-
10.1103/PhysRevLett.103.160503
-
C. Barthel, D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 103, 160503 (2009). 10.1103/PhysRevLett.103.160503
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 160503
-
-
Barthel, C.1
Reilly, D.J.2
Marcus, C.M.3
Hanson, M.P.4
Gossard, A.C.5
-
6
-
-
0032557622
-
-
10.1126/science.280.5367.1238
-
R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and D. E. Prober, Science 280, 1238 (1998). 10.1126/science.280.5367.1238
-
(1998)
Science
, vol.280
, pp. 1238
-
-
Schoelkopf, R.J.1
Wahlgren, P.2
Kozhevnikov, A.A.3
Delsing, P.4
Prober, D.E.5
-
7
-
-
17444424926
-
-
10.1063/1.1897423
-
T. M. Buehler, D. J. Reilly, R. P. Starrett, A. D. Greentree, A. R. Hamilton, A. S. Dzurak, and R. G. Clark, Appl. Phys. Lett. 86, 143117 (2005). 10.1063/1.1897423
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 143117
-
-
Buehler, T.M.1
Reilly, D.J.2
Starrett, R.P.3
Greentree, A.D.4
Hamilton, A.R.5
Dzurak, A.S.6
Clark, R.G.7
-
8
-
-
0038823628
-
-
10.1038/nature01642
-
W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature (London) 423, 422 (2003). 10.1038/nature01642
-
(2003)
Nature (London)
, vol.423
, pp. 422
-
-
Lu, W.1
Ji, Z.2
Pfeiffer, L.3
West, K.W.4
Rimberg, A.J.5
-
9
-
-
2142753092
-
-
10.1063/1.1691491
-
T. Fujisawa, T. Hayashi, Y. Hirayamab, H. D. Cheong, and Y. H. Jeong, Appl. Phys. Lett. 84, 2343 (2004). 10.1063/1.1691491
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 2343
-
-
Fujisawa, T.1
Hayashi, T.2
Hirayamab, Y.3
Cheong, H.D.4
Jeong, Y.H.5
-
10
-
-
77955395822
-
-
Adjusting VQ2 and VD to switch between a QPC and a SQD shifts the charge stability diagram by ∼30mV
-
Adjusting V Q 2 and V D to switch between a QPC and a SQD shifts the charge stability diagram by ∼ 30 mV.
-
-
-
-
11
-
-
35548931541
-
-
10.1063/1.2794995
-
D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Appl. Phys. Lett. 91, 162101 (2007). 10.1063/1.2794995
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 162101
-
-
Reilly, D.J.1
Marcus, C.M.2
Hanson, M.P.3
Gossard, A.C.4
-
12
-
-
77955356557
-
-
The separation time τS is stepped from 1 to 200 ns, every 1000 cycles for a total of 30000 cycles
-
The separation time τ S is stepped from 1 to 200 ns, every 1000 cycles for a total of 30 000 cycles.
-
-
-
-
13
-
-
77955391409
-
-
For QPC1 in Ref., the fit parameters for the histograms are T1 =34μs, τ0 =700ns, and PT ∼0.5
-
For QPC1 in Ref., the fit parameters for the histograms are T1 =34μs, τ0 =700ns, and PT ∼0.5
-
-
-
-
15
-
-
77955342875
-
-
The contribution from thermal fluctuations to intrinsic sensor noise is negligible. The cryogenic amplifier contributes 60% (40%) of the total noise for SQD (QPC1)
-
The contribution from thermal fluctuations to intrinsic sensor noise is negligible. The cryogenic amplifier contributes 60% (40%) of the total noise for SQD (QPC1).
-
-
-
-
17
-
-
0001504284
-
-
10.1103/PhysRevB.44.1646
-
C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991). 10.1103/PhysRevB.44. 1646
-
(1991)
Phys. Rev. B
, vol.44
, pp. 1646
-
-
Beenakker, C.W.J.1
-
18
-
-
77955364905
-
-
The SETE code is available from the National Nanotechnology Infrastructure Network Computation project through
-
The SETE code is available from the National Nanotechnology Infrastructure Network Computation project through www.cns.fas.harvard.edu
-
-
-
-
19
-
-
0001443892
-
-
10.1103/PhysRevB.54.13767
-
M. Stopa, Phys. Rev. B 54, 13767 (1996). 10.1103/PhysRevB.54.13767
-
(1996)
Phys. Rev. B
, vol.54
, pp. 13767
-
-
Stopa, M.1
-
20
-
-
0000523366
-
-
10.1103/PhysRevB.48.18340
-
M. Stopa, Phys. Rev. B 48, 18340 (1993). 10.1103/PhysRevB.48.18340
-
(1993)
Phys. Rev. B
, vol.48
, pp. 18340
-
-
Stopa, M.1
|