-
1
-
-
0034635446
-
-
10.1126/science.287.5455.1024
-
D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 (2000). 10.1126/science.287. 5455.1024
-
(2000)
Science
, vol.287
, pp. 1024
-
-
Chung, D.-Y.1
Hogan, T.2
Brazis, P.3
Rocci-Lane, M.4
Kannewurf, C.5
Bastea, M.6
Uher, C.7
Kanatzidis, M.G.8
-
4
-
-
0242692568
-
-
10.1103/PhysRevB.68.125210
-
T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Phys. Rev. B 68, 125210 (2003). 10.1103/PhysRevB.68.125210
-
(2003)
Phys. Rev. B
, vol.68
, pp. 125210
-
-
Scheidemantel, T.J.1
Ambrosch-Draxl, C.2
Thonhauser, T.3
Badding, J.V.4
Sofo, J.O.5
-
6
-
-
0025849407
-
-
10.1016/0022-3697(91)90151-O
-
H. W. Jeon, H. P. Ha, D. B. Hyun, and J. D. Shim, J. Phys. Chem. Solids 52, 579 (1991). 10.1016/0022-3697(91)90151-O
-
(1991)
J. Phys. Chem. Solids
, vol.52
, pp. 579
-
-
Jeon, H.W.1
Ha, H.P.2
Hyun, D.B.3
Shim, J.D.4
-
7
-
-
0032656823
-
-
10.1016/S0022-0248(99)00159-1
-
A. Giani, A. Boulouz, B. Aboulfarah, F. Pascal-Delannoy, A. Foucaran, A. Boyer, and A. Mzerd, J. Cryst. Growth 204, 91 (1999). 10.1016/S0022-0248(99) 00159-1
-
(1999)
J. Cryst. Growth
, vol.204
, pp. 91
-
-
Giani, A.1
Boulouz, A.2
Aboulfarah, B.3
Pascal-Delannoy, F.4
Foucaran, A.5
Boyer, A.6
Mzerd, A.7
-
8
-
-
15844388776
-
-
10.1016/j.jcrysgro.2004.12.144
-
J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, J. Cryst. Growth 277, 258 (2005). 10.1016/j.jcrysgro.2004.12.144
-
(2005)
J. Cryst. Growth
, vol.277
, pp. 258
-
-
Jiang, J.1
Chen, L.2
Bai, S.3
Yao, Q.4
Wang, Q.5
-
11
-
-
0344063447
-
-
10.1143/JJAP.42.5477
-
H. Iwasaki, A. Ohishi, T. Kajihara, and S. Sano, Jpn. J. Appl. Phys., Part 1 42, 5477 (2003). 10.1143/JJAP.42.5477
-
(2003)
Jpn. J. Appl. Phys., Part 1
, vol.42
, pp. 5477
-
-
Iwasaki, H.1
Ohishi, A.2
Kajihara, T.3
Sano, S.4
-
12
-
-
0035846181
-
-
10.1038/35098012
-
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature (London) 413, 597 (2001). 10.1038/35098012
-
(2001)
Nature (London)
, vol.413
, pp. 597
-
-
Venkatasubramanian, R.1
Siivola, E.2
Colpitts, T.3
O'Quinn, B.4
-
14
-
-
50549200723
-
-
10.1016/0022-3697(63)90207-5
-
S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963). 10.1016/0022-3697(63) 90207-5
-
(1963)
J. Phys. Chem. Solids
, vol.24
, pp. 479
-
-
Nakajima, S.1
-
16
-
-
35949018705
-
-
10.1103/PhysRevB.24.864
-
E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981). 10.1103/PhysRevB.24.864
-
(1981)
Phys. Rev. B
, vol.24
, pp. 864
-
-
Wimmer, E.1
Krakauer, H.2
Weinert, M.3
Freeman, A.J.4
-
19
-
-
77955385256
-
-
In Ref., the calculated S and σ in the constant relaxation-time approximation show good agreement with experiment
-
In Ref., the calculated S and σ in the constant relaxation-time approximation show good agreement with experiment.
-
-
-
-
20
-
-
77955364155
-
-
-3 (Ref.)
-
- 3 (Ref.).
-
-
-
-
21
-
-
0001323217
-
-
10.1103/PhysRevB.53.10751
-
J. L. P. Hughes and J. E. Sipe, Phys. Rev. B 53, 10751 (1996). 10.1103/PhysRevB.53.10751
-
(1996)
Phys. Rev. B
, vol.53
, pp. 10751
-
-
Hughes, J.L.P.1
Sipe, J.E.2
-
22
-
-
77955354713
-
-
The Bi and Sb tellurides show anisotropy in S and σ between basal plane and trigonal axis ( c direction) (Ref.). We used the calculated S in the ab plane for comparison with experimental data since the directions of electrical current are parallel to the (111) cleavage planes. (Ref., and references therein)
-
The Bi and Sb tellurides show anisotropy in S and σ between basal plane and trigonal axis (c direction) (Ref.). We used the calculated S in the a b plane for comparison with experimental data since the directions of electrical current are parallel to the (111) cleavage planes. (Ref., and references therein).
-
-
-
-
23
-
-
33646823743
-
-
Army Foreign Science and Technology Center, Charlottesville, VA
-
B. M. Goltsman, B. A. Kudinov, and I. A. Smirnov, Thermoelectric Semiconductor Material Based on Bi 2 Te 3 (Army Foreign Science and Technology Center, Charlottesville, VA, 1973).
-
(1973)
Thermoelectric Semiconductor Material Based on Bi2 Te3
-
-
Goltsman, B.M.1
Kudinov, B.A.2
Smirnov, I.A.3
-
24
-
-
0005324860
-
-
10.1088/0370-1328/72/4/309
-
I. G. Austin, Proc. Phys. Soc. London 72, 545 (1958). 10.1088/0370-1328/72/4/309
-
(1958)
Proc. Phys. Soc. London
, vol.72
, pp. 545
-
-
Austin, I.G.1
-
25
-
-
0003395029
-
-
Landolt-Börnstein, New Series, Group III Vol. Springer, New York, H. Weiss (M. Schulz, and edited by O. Madelung
-
Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Group III Vol. 17, Pt. F, edited by, O. Madelung,,, M. Schulz,, and, H. Weiss, (Springer, New York, 1983).
-
(1983)
Numerical Data and Functional Relationships in Science and Technology
, vol.17
-
-
-
26
-
-
84868308129
-
-
10.1103/PhysRevB.63.085112
-
S. J. Youn and A. J. Freeman, Phys. Rev. B 63, 085112 (2001). 10.1103/PhysRevB.63.085112
-
(2001)
Phys. Rev. B
, vol.63
, pp. 085112
-
-
Youn, S.J.1
Freeman, A.J.2
-
27
-
-
33751103144
-
-
10.1103/PhysRevB.74.205113
-
P. Larson, Phys. Rev. B 74, 205113 (2006). 10.1103/PhysRevB.74.205113
-
(2006)
Phys. Rev. B
, vol.74
, pp. 205113
-
-
Larson, P.1
-
28
-
-
77955383031
-
-
In the fixed structure, the calculated S is smaller than that of Bi2 Te3 with aave / cave due to the volume effect
-
In the fixed structure, the calculated S is smaller than that of Bi 2 Te 3 with a ave / cave due to the volume effect.
-
-
-
-
29
-
-
77955369694
-
-
In Fig. , we can also see the similar behavior, where S of ( Bi0.5 Sb0.5 ) 2 Te3 showing the large atomic relaxation is smaller than that of Sb2 Te3 at the same carrier density, even though the volume of ( Bi0.5 Sb0.5 ) 2 Te3 is larger than that of Sb2 Te3
-
In Fig., we can also see the similar behavior, where S of (Bi 0.5 Sb 0.5) 2 Te 3 showing the large atomic relaxation is smaller than that of Sb 2 Te 3 at the same carrier density, even though the volume of (Bi 0.5 Sb 0.5) 2 Te 3 is larger than that of Sb 2 Te 3.
-
-
-
|