-
1
-
-
0035446750
-
Data compression with ENO schemes: A case study
-
Amat, S., Arandiga, F., Cohen, A., Donat, R., Garcia, G., von Oehsen, M.: Data compression with ENO schemes: A case study. Appl. Comput. Harmon. Anal. 11, 273-288 (2001).
-
(2001)
Appl. Comput. Harmon. Anal.
, vol.11
, pp. 273-288
-
-
Amat, S.1
Arandiga, F.2
Cohen, A.3
Donat, R.4
Garcia, G.5
von Oehsen, M.6
-
2
-
-
33744728367
-
Analysis of a new nonlinear subdivision scheme applications in image processing
-
Amat, S., Donat, R., Liandrat, J., Trillo, J. C.: Analysis of a new nonlinear subdivision scheme applications in image processing. Found. Comput. Math. 6(2), 193-225 (2006).
-
(2006)
Found. Comput. Math.
, vol.6
, Issue.2
, pp. 193-225
-
-
Amat, S.1
Donat, R.2
Liandrat, J.3
Trillo, J.C.4
-
3
-
-
13844271464
-
On the stability of the PPH nonlinear multiresolution
-
Amat, S., Liandrat, J.: On the stability of the PPH nonlinear multiresolution. Appl. Comput. Harmon. Anal. 18, 198-206 (2005).
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.18
, pp. 198-206
-
-
Amat, S.1
Liandrat, J.2
-
4
-
-
20144372379
-
Multiscale approximation of piecewise smooth two-dimensional functions using normal triangulated meshes
-
Baraniuk, R., Janssen, M., Lavu, S.: Multiscale approximation of piecewise smooth two-dimensional functions using normal triangulated meshes. Appl. Comput. Harmon. Anal. 19, 92-130 (2005).
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.19
, pp. 92-130
-
-
Baraniuk, R.1
Janssen, M.2
Lavu, S.3
-
5
-
-
0039885660
-
-
Providence: American Mathematical Society
-
Cavaretta, A. S., Dahmen, W., Micchelli, C. A.: Stationary Subdivision, vol. 93. American Mathematical Society, Providence (1991).
-
(1991)
Stationary Subdivision
, vol.93
-
-
Cavaretta, A.S.1
Dahmen, W.2
Micchelli, C.A.3
-
6
-
-
0346849816
-
Quasilinear subdivision schemes with applications to ENO interpolation
-
Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89-116 (2003).
-
(2003)
Appl. Comput. Harmon. Anal.
, vol.15
, pp. 89-116
-
-
Cohen, A.1
Dyn, N.2
Matei, B.3
-
8
-
-
47749110632
-
Analysis of some bivariate non-linear interpolatory subdivision schemes
-
Dadourian, K., Liandrat, J.: Analysis of some bivariate non-linear interpolatory subdivision schemes. Numer. Algorithms 48(1-3), 261-278 (2008).
-
(2008)
Numer. Algorithms
, vol.48
, Issue.1-3
, pp. 261-278
-
-
Dadourian, K.1
Liandrat, J.2
-
9
-
-
7444252189
-
Normal multiresolution approximation of curves
-
Daubechies, I., Runborg, O., Sweldens, W.: Normal multiresolution approximation of curves. Constr. Approx. 20, 399-463 (2004).
-
(2004)
Constr. Approx.
, vol.20
, pp. 399-463
-
-
Daubechies, I.1
Runborg, O.2
Sweldens, W.3
-
10
-
-
0034345319
-
Nonlinear pyramid transforms based on median-interpolation
-
Donoho, D. L., Yu, T. P.-Y.: Nonlinear pyramid transforms based on median-interpolation. SIAM J. Math. Anal. 31(5), 1030-1061 (2000).
-
(2000)
SIAM J. Math. Anal.
, vol.31
, Issue.5
, pp. 1030-1061
-
-
Donoho, D.L.1
Yu, T.P.-Y.2
-
11
-
-
0001821903
-
Subdivision schemes in CAGD
-
W. A. Light (Ed.), London: Oxford University Press
-
Dyn, N.: Subdivision schemes in CAGD. In: Light, W. A. (ed.) Advances in Numerical Analysis, vol. II, pp. 36-104. Oxford University Press, London (1992).
-
(1992)
Advances in Numerical Analysis
, vol.II
, pp. 36-104
-
-
Dyn, N.1
-
12
-
-
70449633402
-
Approximation order of interpolatory nonlinear subdivision schemes
-
Dyn, N., Grohs, P., Wallner, J.: Approximation order of interpolatory nonlinear subdivision schemes. J. Comput. Appl. Math. 223, 1697-1703 (2010).
-
(2010)
J. Comput. Appl. Math.
, vol.223
, pp. 1697-1703
-
-
Dyn, N.1
Grohs, P.2
Wallner, J.3
-
13
-
-
85095851103
-
Subdivision schemes in geometric modelling
-
Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73-144 (2002).
-
(2002)
Acta Numer.
, vol.11
, pp. 73-144
-
-
Dyn, N.1
Levin, D.2
-
14
-
-
0008294190
-
Nonlinear stationary subdivision
-
N. K. Govil, R. N. Mohapatra, Z. Nashed, A. Sharma, and J. Szabados (Eds.), New York: Dekker
-
Floater, M. S., Micchelli, C. A.: Nonlinear stationary subdivision. In: Govil, N. K., Mohapatra, R. N., Nashed, Z., Sharma, A., Szabados, J. (eds.) Approximation Theory: in Memory of A. K. Varma, pp. 209-224. Dekker, New York (1998).
-
(1998)
Approximation Theory: In Memory of A.K. Varma
, pp. 209-224
-
-
Floater, M.S.1
Micchelli, C.A.2
-
15
-
-
55349135938
-
Smoothness analysis of subdivision schemes on regular grids by proximity
-
Grohs, P.: Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM J. Numer. Anal. 46, 2169-2182 (2008).
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 2169-2182
-
-
Grohs, P.1
-
16
-
-
70349878581
-
Smoothness equivalence properties of univariate subdivision schemes and their projection analogues
-
Grohs, P.: Smoothness equivalence properties of univariate subdivision schemes and their projection analogues. Numer. Math. 113(2), 163-180 (2009).
-
(2009)
Numer. Math.
, vol.113
, Issue.2
, pp. 163-180
-
-
Grohs, P.1
-
17
-
-
0034446936
-
Normal meshes
-
K. Akeley (Ed.), New York: ACM
-
Guskov, I., Vidimce, K., Sweldens, W., Schröder, P.: Normal meshes. In: Akeley, K. (ed.) Computer Graphics (SIGGRAPH '00: Proceedings), pp. 95-102. ACM, New York (2000).
-
(2000)
Computer Graphics (SIGGRAPH '00: Proceedings)
, pp. 95-102
-
-
Guskov, I.1
Vidimce, K.2
Sweldens, W.3
Schröder, P.4
-
18
-
-
77955087520
-
Stability of nonlinear multiresolution analysis
-
Harizanov, S.: Stability of nonlinear multiresolution analysis. PAMM 8(1), 10933-10934 (2008).
-
(2008)
Pamm
, vol.8
, Issue.1
, pp. 10933-10934
-
-
Harizanov, S.1
-
20
-
-
33749725182
-
Uniformly high order essentially non-oscillatory schemes
-
Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes. J. Comput. Phys. 71, 231-303 (1987).
-
(1987)
J. Comput. Phys.
, vol.71
, pp. 231-303
-
-
Harten, A.1
Engquist, B.2
Osher, S.3
Chakravarthy, S.4
-
21
-
-
0034314944
-
Nonlinear multiresolution signal decomposition schemes. I. Morphological pyramids
-
Heijmans, H. J. A. M., Goutsias, J. K.: Nonlinear multiresolution signal decomposition schemes. I. Morphological pyramids. IEEE Trans. Image Process. 9(11), 1862-1876 (2000).
-
(2000)
IEEE Trans. Image Process.
, vol.9
, Issue.11
, pp. 1862-1876
-
-
Heijmans, H.J.A.M.1
Goutsias, J.K.2
-
22
-
-
0034316249
-
Nonlinear multiresolution signal decomposition schemes. ii. Morphological wavelets
-
Heijmans, H. J. A. M., Goutsias, J. K.: Nonlinear multiresolution signal decomposition schemes. ii. Morphological wavelets. IEEE Trans. Image Process. 9(11), 1897-1913 (2000).
-
(2000)
IEEE Trans. Image Process.
, vol.9
, Issue.11
, pp. 1897-1913
-
-
Heijmans, H.J.A.M.1
Goutsias, J.K.2
-
23
-
-
4444264920
-
Compression of normal meshes
-
G. Brunnett, B. Hamann, H. Müller, and L. Linsen (Eds.), Berlin: Springer
-
Khodakovsky, A., Guskov, I.: Compression of normal meshes. In: Brunnett, G., Hamann, B., Müller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization, pp. 189-207. Springer, Berlin (2003).
-
(2003)
Geometric Modeling for Scientific Visualization
, pp. 189-207
-
-
Khodakovsky, A.1
Guskov, I.2
-
24
-
-
0034449808
-
Progressive geometry compression
-
K. Akeley (Ed.), New York: ACM
-
Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: Akeley, K. (ed.) Computer Graphics (SIGGRAPH '00: Proceedings), pp. 271-278. ACM, New York (2000).
-
(2000)
Computer Graphics (SIGGRAPH '00: Proceedings)
, pp. 271-278
-
-
Khodakovsky, A.1
Schröder, P.2
Sweldens, W.3
-
25
-
-
0032350361
-
Convexity preserving interpolatory subdivision schemes
-
Kuijt, F., van Damme, R.: Convexity preserving interpolatory subdivision schemes. Constr. Approx. 14, 609-630 (1998).
-
(1998)
Constr. Approx.
, vol.14
, pp. 609-630
-
-
Kuijt, F.1
van Damme, R.2
-
26
-
-
77955087212
-
Stability of subdivision schemes
-
The Netherlands: Faculty of Applied Mathematics, University of Twente
-
Kuijt, F., van Damme, R.: Stability of subdivision schemes. TW Memorandum 1469, Faculty of Applied Mathematics, University of Twente, The Netherlands (1998).
-
(1998)
TW Memorandum
, vol.1469
-
-
Kuijt, F.1
van Damme, R.2
-
27
-
-
0032664612
-
Monotonicity preserving interpolatory subdivision schemes
-
Kuijt, F., van Damme, R.: Monotonicity preserving interpolatory subdivision schemes. J. Comput. Appl. Math. 101(1-2), 203-229 (1999).
-
(1999)
J. Comput. Appl. Math.
, vol.101
, Issue.1-2
, pp. 203-229
-
-
Kuijt, F.1
van Damme, R.2
-
28
-
-
0000592595
-
Weighted essentially non-oscillatory schemes
-
Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200-212 (1994).
-
(1994)
J. Comput. Phys.
, vol.115
, pp. 200-212
-
-
Liu, X.-D.1
Osher, S.2
Chan, T.3
-
29
-
-
24644501548
-
Geometrically controlled 4-point interpolatory schemes
-
Berlin: Springer
-
Marinov, M., Dyn, N., Levin, D.: Geometrically controlled 4-point interpolatory schemes. In: Advances in Multiresolution for Geometric Modelling, pp. 301-317. Springer, Berlin (2004).
-
(2004)
Advances in Multiresolution for Geometric Modelling
, pp. 301-317
-
-
Marinov, M.1
Dyn, N.2
Levin, D.3
-
30
-
-
14844359032
-
Smoothness characterization and stability in nonlinear multiscale framework: Theoretical results
-
Matei, B.: Smoothness characterization and stability in nonlinear multiscale framework: theoretical results. Asymptot. Anal. 41(3-4), 277-309 (2005).
-
(2005)
Asymptot. Anal.
, vol.41
, Issue.3-4
, pp. 277-309
-
-
Matei, B.1
-
31
-
-
14844346713
-
Smoothness of a nonlinear subdivision scheme
-
A. Cohen, J.-L. Merrien, and L. L. Schumaker (Eds.), Brentwood: Nashboro Press
-
Oswald, P.: Smoothness of a nonlinear subdivision scheme. In: Cohen, A., Merrien, J.-L., Schumaker, L. L. (eds.) Curve and Surface Fitting: Saint-Malo 2002, pp. 323-332. Nashboro Press, Brentwood (2003).
-
(2003)
Curve and Surface Fitting: Saint-Malo 2002
, pp. 323-332
-
-
Oswald, P.1
-
32
-
-
4043102638
-
Smoothness of nonlinear median-interpolation subdivision
-
Oswald, P.: Smoothness of nonlinear median-interpolation subdivision. Adv. Comput. Math. 20, 401-423 (2004).
-
(2004)
Adv. Comput. Math.
, vol.20
, pp. 401-423
-
-
Oswald, P.1
-
33
-
-
1442282989
-
Power ENO methods: A fifth-order accurate weighted power ENO method
-
Serna, S., Marquina, A.: Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194, 632-658 (2004).
-
(2004)
J. Comput. Phys.
, vol.194
, pp. 632-658
-
-
Serna, S.1
Marquina, A.2
-
34
-
-
33745778314
-
Multiscale representations for manifold-valued data
-
Ur Rahman, I., Drori, I., Stodden, V. C., Donoho, D. L., Schröder, P.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4(4), 1201-1232 (2005).
-
(2005)
Multiscale Model. Simul.
, vol.4
, Issue.4
, pp. 1201-1232
-
-
Ur Rahman, I.1
Drori, I.2
Stodden, V.C.3
Donoho, D.L.4
Schröder, P.5
-
35
-
-
33745784258
-
Smoothness analysis of subdivision schemes by proximity
-
Wallner, J.: Smoothness analysis of subdivision schemes by proximity. Constr. Approx. 24, 289-318 (2006).
-
(2006)
Constr. Approx.
, vol.24
, pp. 289-318
-
-
Wallner, J.1
-
36
-
-
24644495206
-
1 analysis of subdivision schemes on manifolds by proximity
-
1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22, 593-622 (2005).
-
(2005)
Comput. Aided Geom. Des.
, vol.22
, pp. 593-622
-
-
Wallner, J.1
Dyn, N.2
-
37
-
-
45849118645
-
Smoothness properties of Lie group subdivision schemes
-
Wallner, J., Nava Yazdani, E., Grohs, P.: Smoothness properties of Lie group subdivision schemes. Multiscale Model. Simul. 6, 493-505 (2007).
-
(2007)
Multiscale Model. Simul.
, vol.6
, pp. 493-505
-
-
Wallner, J.1
Nava Yazdani, E.2
Grohs, P.3
-
38
-
-
21644486959
-
Smoothness analysis of nonlinear subdivision schemes of homogeneous and affine invariant type
-
Xie, G., Yu, T. P.-Y.: Smoothness analysis of nonlinear subdivision schemes of homogeneous and affine invariant type. Constr. Approx. 22(2), 219-254 (2005).
-
(2005)
Constr. Approx.
, vol.22
, Issue.2
, pp. 219-254
-
-
Xie, G.1
Yu, T.P.-Y.2
-
39
-
-
38649127310
-
Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach
-
Xie, G., Yu, T. P.-Y.: Smoothness equivalence properties of manifold-valued data subdivision schemes based on the projection approach. SIAM J. Numer. Anal. 45(3), 1200-1225 (2007).
-
(2007)
SIAM J. Numer. Anal.
, vol.45
, Issue.3
, pp. 1200-1225
-
-
Xie, G.1
Yu, T.P.-Y.2
|