메뉴 건너뛰기




Volumn 14, Issue 4, 1998, Pages 609-630

Convexity preserving interpolatory subdivision schemes

Author keywords

Convexity preservation; Interpolation; Subdivision schemes

Indexed keywords


EID: 0032350361     PISSN: 01764276     EISSN: None     Source Type: Journal    
DOI: 10.1007/s003659900093     Document Type: Article
Times cited : (49)

References (12)
  • 2
    • 0000086910 scopus 로고
    • The design of curves and surfaces by subdivision algorithms
    • (T. Lyche, L. L. Schumaker, eds.). Boston: Academic Press
    • A. S. CAVARETTA, C. A. MICCHELLI (1989): The design of curves and surfaces by subdivision algorithms. In: Mathematical Methods in CAGD (T. Lyche, L. L. Schumaker, eds.). Boston: Academic Press, pp. 115-153.
    • (1989) Mathematical Methods in Cagd , pp. 115-153
    • Cavaretta, A.S.1    Micchelli, C.A.2
  • 3
    • 0040080685 scopus 로고
    • Shape preserving approximation
    • (R. R. Martin, ed.). Oxford: Clarendon Press
    • B. E. J. DAHLBERG, B. JOHANSSON (1987): Shape preserving approximation. In: The Mathematics of Surfaces II (R. R. Martin, ed.). Oxford: Clarendon Press, pp. 419-426.
    • (1987) The Mathematics of Surfaces , vol.2 , pp. 419-426
    • Dahlberg, B.E.J.1    Johansson, B.2
  • 4
    • 0023597654 scopus 로고
    • A 4-point interpolatory subdivision scheme for curve design
    • N. DYN, J. A. GREGORY, D. LEVIN (1987): A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design, 4:257-268.
    • (1987) Comput. Aided Geom. Design , vol.4 , pp. 257-268
    • Dyn, N.1    Gregory, J.A.2    Levin, D.3
  • 5
    • 0000541265 scopus 로고
    • Analysis of uniform binary subdivision schemes for curve design
    • N. DYN, J. A. GREGORY, D. LEVIN (1991): Analysis of uniform binary subdivision schemes for curve design. Constr. Approx., 7(2): 127-147.
    • (1991) Constr. Approx. , vol.7 , Issue.2 , pp. 127-147
    • Dyn, N.1    Gregory, J.A.2    Levin, D.3
  • 6
    • 0000910516 scopus 로고
    • Interpolatory convexity preserving subdivision schemes for curves and surfaces
    • N. DYN, D. LEVIN, D. LIU (1992): Interpolatory convexity preserving subdivision schemes for curves and surfaces. Comput. Aided Design, 24(4):211-216.
    • (1992) Comput. Aided Design , vol.24 , Issue.4 , pp. 211-216
    • Dyn, N.1    Levin, D.2    Liu, D.3
  • 7
    • 0022663198 scopus 로고
    • Interpolation through an iterative scheme
    • S. DUBUC (1986): Interpolation through an iterative scheme. J. Math. Anal. Appl., 114:185-204.
    • (1986) J. Math. Anal. Appl. , vol.114 , pp. 185-204
    • Dubuc, S.1
  • 11
    • 0008351983 scopus 로고    scopus 로고
    • Smooth interpolation by a convexity preserving nonlinear subdivision algorithm
    • (A. Le Méhauté, C. Rabut, L. L. Schumaker, eds.). Nashville, TN: Vanderbilt University Press
    • F. KUIJT, R. VAN DAMME (1997): Smooth Interpolation by a convexity preserving nonlinear subdivision algorithm. In: Surface Fitting and Multiresolution Methods (A. Le Méhauté, C. Rabut, L. L. Schumaker, eds.). Nashville, TN: Vanderbilt University Press, pp. 219-224.
    • (1997) Surface Fitting and Multiresolution Methods , pp. 219-224
    • Kuijt, F.1    Van Damme, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.