-
1
-
-
0038232870
-
-
Preprint No. 184, IGPM, RWTH Aachen (January)
-
A. Barinka, S. Dahlke and N. Mulders, The IGPM Villemoes machine, Preprint No. 184, IGPM, RWTH Aachen (January 2000), http://www.igpm.rwth-aachen. de/reports.
-
(2000)
The IGPM Villemoes Machine
-
-
Barinka, A.1
Dahlke, S.2
Mulders, N.3
-
4
-
-
0000160525
-
Two-scale difference equations II. Local regularity, infinite products of matrices and fractals
-
I. Daubechies and J. Lagarias, Two-scale difference equations II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23(4) (1992) 1031-1079.
-
(1992)
SIAM J. Math. Anal.
, vol.23
, Issue.4
, pp. 1031-1079
-
-
Daubechies, I.1
Lagarias, J.2
-
7
-
-
0034345319
-
Nonlinear pyramid transforms based on median interpolation
-
D. Donoho and T.P.-Y. Yu, Nonlinear pyramid transforms based on median interpolation, SIAM J. Math. Anal. 31(5) (2000) 1030-1061.
-
(2000)
SIAM J. Math. Anal.
, vol.31
, Issue.5
, pp. 1030-1061
-
-
Donoho, D.1
Yu, T.P.-Y.2
-
8
-
-
0000541265
-
Analysis of uniform binary subdivision schemes for curve design
-
N. Dyn, J. Gregory and D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx. 7 (1991) 127-147.
-
(1991)
Constr. Approx.
, vol.7
, pp. 127-147
-
-
Dyn, N.1
Gregory, J.2
Levin, D.3
-
10
-
-
4043085190
-
Triangular √3-subdivision: The regular case
-
to appear
-
Q. Jiang and P. Oswald, Triangular √3-subdivision: The regular case, J. Comput. Appl. Math. (to appear), http://cm.bell-labs.com/who/poswald.
-
J. Comput. Appl. Math.
-
-
Jiang, Q.1
Oswald, P.2
-
11
-
-
0036166706
-
Shape preserving interpolatory subdivision schemes for nonuniform data
-
F. Kuijt and R. van Damme, Shape preserving interpolatory subdivision schemes for nonuniform data, J. Approx. Theory 114(1) (2002) 1-32.
-
(2002)
J. Approx. Theory
, vol.114
, Issue.1
, pp. 1-32
-
-
Kuijt, F.1
Van Damme, R.2
-
13
-
-
0002049919
-
Refinement and subdivision for spaces of integer translates of a compactly supported function
-
eds. D.F. Griffith and G.A. Watson (Academic Press, New York)
-
C.A. Micchelli and H. Prautzsch, Refinement and subdivision for spaces of integer translates of a compactly supported function, in: Numerical Analysis, eds. D.F. Griffith and G.A. Watson (Academic Press, New York, 1987) pp. 192-222.
-
(1987)
Numerical Analysis
, pp. 192-222
-
-
Micchelli, C.A.1
Prautzsch, H.2
-
14
-
-
4043072382
-
Smoothness of nonlinear subdivision schemes
-
St.-Malo, (submitted)
-
P. Oswald, Smoothness of nonlinear subdivision schemes, in: Curves and Surfaces, St.-Malo, 2002 (submitted), http://cm.bell-labs.com/who/poswald.
-
(2002)
Curves and Surfaces
-
-
Oswald, P.1
-
15
-
-
21144481833
-
Simple regularity criteria for subdivision schemes
-
O. Rioul, Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal. 23 (1992) 1544-1576.
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 1544-1576
-
-
Rioul, O.1
-
16
-
-
0042275098
-
Wavelet analysis of the refinement equation
-
L. Villemoes, Wavelet analysis of the refinement equation, SIAM J. Math. Anal. 25 (1994) 1433-1460.
-
(1994)
SIAM J. Math. Anal.
, vol.25
, pp. 1433-1460
-
-
Villemoes, L.1
-
17
-
-
0002062618
-
-
Ph.D. thesis, Program of Scientific Computing and Computational Mathematics, Stanford University, Stanford, CA
-
T. P.-Y. Yu, Developments in interpolating wavelet transforms, Ph.D. thesis, Program of Scientific Computing and Computational Mathematics, Stanford University, Stanford, CA (1997).
-
(1997)
Developments in Interpolating Wavelet Transforms
-
-
Yu, T.P.-Y.1
|