-
2
-
-
50549213583
-
Optimal control of Markov decision processes with incomplete state estimation
-
Astrom, K. J. (1965). Optimal control of Markov decision processes with incomplete state estimation. Journal of Mathematical Analysis and Applications, 10, 174-205.
-
(1965)
Journal of Mathematical Analysis and Applications
, vol.10
, pp. 174-205
-
-
Astrom, K.J.1
-
3
-
-
0002430114
-
Subjectivity and correlation in randomized strategies
-
Aumann, R. J. (1974). Subjectivity and correlation in randomized strategies. Journal of Mathematical Economics, 1, 67-96.
-
(1974)
Journal of Mathematical Economics
, vol.1
, pp. 67-96
-
-
Aumann, R.J.1
-
4
-
-
0036874366
-
The complexity of decentralized control of Markov decision processes
-
Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research, 27(A), 819-840.
-
(2002)
Mathematics of Operations Research
, vol.27
, Issue.A
, pp. 819-840
-
-
Bernstein, D.S.1
Givan, R.2
Immerman, N.3
Zilberstein, S.4
-
5
-
-
84880740944
-
Bounded policy iteration for decentralized POMDPs
-
Bernstein, D. S., Hansen, E. A., & Zilberstein, S. (2005). Bounded policy iteration for decentralized POMDPs. In Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 1287-1292.
-
(2005)
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence
, pp. 1287-1292
-
-
Bernstein, D.S.1
Hansen, E.A.2
Zilberstein, S.3
-
7
-
-
0001909869
-
Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes
-
Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes. In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence, pp. 54-61.
-
(1997)
Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence
, pp. 54-61
-
-
Cassandra, A.1
Littman, M.L.2
Zhang, N.L.3
-
9
-
-
4544325183
-
Approximate solutions for partially observable stochastic games with common payoffs
-
Emery-Montemerlo, R., Gordon, G., Schnieder, J., & Thrun, S. (2004). Approximate solutions for partially observable stochastic games with common payoffs. In Proceedings of the Third International Joint Conference on Autonomous Agents and Multi Agent Systems, pp. 136-143.
-
(2004)
Proceedings of the Third International Joint Conference on Autonomous Agents and Multi Agent Systems
, pp. 136-143
-
-
Emery-Montemerlo, R.1
Gordon, G.2
Schnieder, J.3
Thrun, S.4
-
14
-
-
9444233318
-
Dynamic programming for partially observable stochastic games
-
Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially observable stochastic games. In Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 709-715.
-
(2004)
Proceedings of the Nineteenth National Conference on Artificial Intelligence
, pp. 709-715
-
-
Hansen, E.A.1
Bernstein, D.S.2
Zilberstein, S.3
-
15
-
-
36348942884
-
Point-based policy iteration
-
Ji, S., Parr, R., Li, H., Liao, X., & Carin, L. (2007). Point-based policy iteration. In Proceedings of the Twenty-Second National Conference on Artificial Intelligence, pp. 1243-1249.
-
(2007)
Proceedings of the Twenty-Second National Conference on Artificial Intelligence
, pp. 1243-1249
-
-
Ji, S.1
Parr, R.2
Li, H.3
Liao, X.4
Carin, L.5
-
16
-
-
0032073263
-
Planning and acting in partially observable stochastic domains
-
Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1-2), 99-134.
-
(1998)
Artificial Intelligence
, vol.101
, Issue.1-2
, pp. 99-134
-
-
Kaelbling, L.P.1
Littman, M.L.2
Cassandra, A.R.3
-
17
-
-
0141503453
-
Multi-agent influence diagrams for representing and solving games
-
Koller, D., & Milch, B. (2003). Multi-agent influence diagrams for representing and solving games. Games and Economic Behavior, 45(l), 181-221.
-
(2003)
Games and Economic Behavior
, vol.45
, Issue.L
, pp. 181-221
-
-
Koller, D.1
Milch, B.2
-
20
-
-
85138579181
-
Learning policies for partially observable environments: Scaling up
-
Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995). Learning policies for partially observable environments: Scaling up. In Proceedings of the Twelfth International Conference on Machine Learning, pp. 362-370.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
, pp. 362-370
-
-
Littman, M.L.1
Cassandra, A.R.2
Kaelbling, L.P.3
-
21
-
-
84880823326
-
Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings
-
Nair, R., Pynadath, D., Yokoo, M., Tambe, M., & Marsella, S. (2003). Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 705- 711.
-
(2003)
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
, pp. 705-711
-
-
Nair, R.1
Pynadath, D.2
Yokoo, M.3
Tambe, M.4
Marsella, S.5
-
22
-
-
29344437834
-
Networked distributed POMDPs: A synthesis of distributed constraint optimization and POMDPs
-
Nair, R., Varakantham, P., Tambe, M., & Yokoo, M. (2005). Networked distributed POMDPs: A synthesis of distributed constraint optimization and POMDPs. In Proceedings of the Twentieth National Conference on Artificial Intelligence, pp. 133-139.
-
(2005)
Proceedings of the Twentieth National Conference on Artificial Intelligence
, pp. 133-139
-
-
Nair, R.1
Varakantham, P.2
Tambe, M.3
Yokoo, M.4
-
24
-
-
0012646255
-
Learning to cooperate via policy search
-
Peshkin, L., Kim, K.-E., Meuleau, N., & Kaelbling, L. P. (2000). Learning to cooperate via policy search. In Proceedings of the Sixteenth International Conference on Uncertainty in Artificial Intelligence, pp. 489-496.
-
(2000)
Proceedings of the Sixteenth International Conference on Uncertainty in Artificial Intelligence
, pp. 489-496
-
-
Peshkin, L.1
Kim, K.-E.2
Meuleau, N.3
Kaelbling, L.P.4
-
25
-
-
84880772945
-
Point-based value iteration: An anytime algorithm for POMDPs
-
Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based value iteration: An anytime algorithm for POMDPs. In Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 1025-1031.
-
(2003)
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
, pp. 1025-1031
-
-
Pineau, J.1
Gordon, G.2
Thrun, S.3
-
26
-
-
0042658750
-
A feasible computational approach to infinite-horizon partially- observed Markov decision processes
-
Tech. rep, Georgia Institute of Technology. Reprinted in Working Notes of the 1998 AAA I Fall Symposium on Planning Using Partially Observable Markov Decision Processes
-
Platzman, L. K. (1980). A feasible computational approach to infinite-horizon partially- observed Markov decision processes. Tech. rep., Georgia Institute of Technology. Reprinted in Working Notes of the 1998 AAA I Fall Symposium on Planning Using Partially Observable Markov Decision Processes.
-
(1980)
-
-
Platzman, L.K.1
-
31
-
-
2142812536
-
Learning without state-estimation in partially observable markovian decision processes
-
Singh, S. P., Jaakkola, T., & Jordan, M. I. (1994). Learning without state-estimation in partially observable markovian decision processes. In Proceedings of the Eleventh International Conference on Machine Learning, pp. 284-292.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 284-292
-
-
Singh, S.P.1
Jaakkola, T.2
Jordan, M.I.3
-
32
-
-
0015658957
-
The optimal control of partially observable Markov processes over a finite horizon
-
Small wood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable Markov processes over a finite horizon. Operations Research, 21(h), 1071-1088.
-
(1973)
Operations Research, 21(h)
, pp. 1071-1088
-
-
Small wood, R.D.1
Sondik, E.J.2
-
35
-
-
0017943242
-
The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs
-
Sondik, E. J. (1978). The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs. Operations Research, 26, 282-304.
-
(1978)
Operations Research
, vol.26
, pp. 282-304
-
-
Sondik, E.J.1
-
38
-
-
80053226937
-
MAA*: A heuristic search algorithm for solving decentralized POMDPs
-
Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search algorithm for solving decentralized POMDPs. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence, pp. 576-590.
-
(2005)
Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence
, pp. 576-590
-
-
Szer, D.1
Charpillet, F.2
Zilberstein, S.3
-
39
-
-
0015158656
-
Separation of estimation and control for discrete time systems
-
Witsenhausen, H. S. (1971). Separation of estimation and control for discrete time systems. Proceedings of the IEEE, 55(11), 1557-1566.
-
(1971)
Proceedings of the IEEE
, vol.55
, Issue.11
, pp. 1557-1566
-
-
Witsenhausen, H.S.1
-
41
-
-
0036374229
-
Speeding up the convergence of value iteration in partially observable Markov decision processes
-
Zhang, N. L., & Zhang, W. (2001). Speeding up the convergence of value iteration in partially observable Markov decision processes. Journal of Artificial Intelligence Research, 14, 29-51.
-
(2001)
Journal of Artificial Intelligence Research
, vol.14
, pp. 29-51
-
-
Zhang, N.L.1
Zhang, W.2
|