-
2
-
-
0027574670
-
-
See for example, 10.1016/0038-1098(93)90888-T
-
See for example M. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993). 10.1016/0038-1098(93)90888-T
-
(1993)
Solid State Commun.
, vol.86
, pp. 141
-
-
Sigalas, M.M.1
Economou, E.N.2
-
3
-
-
59949098337
-
-
10.1103/RevModPhys.81.109
-
A. H. Castro Neto, Rev. Mod. Phys. 81, 109 (2009). 10.1103/RevModPhys.81. 109
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109
-
-
Castro Neto, A.H.1
-
4
-
-
33847644488
-
-
See for example, 10.1126/science.1138020;
-
See for example V. V. Cheianov, Science 315, 1252 (2007) 10.1126/science.1138020
-
(2007)
Science
, vol.315
, pp. 1252
-
-
Cheianov, V.V.1
-
5
-
-
65549168773
-
-
10.1103/PhysRevLett.102.146804
-
C. W. J. Beenakker, Phys. Rev. Lett. 102, 146804 (2009). 10.1103/PhysRevLett.102.146804
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 146804
-
-
Beenakker, C.W.J.1
-
6
-
-
0346342386
-
-
For a review see, 10.1088/0953-8984/15/50/R02
-
For a review see B. J. LeRoy, J. Phys.: Condens. Matter 15, R1835 (2003). 10.1088/0953-8984/15/50/R02
-
(2003)
J. Phys.: Condens. Matter
, vol.15
, pp. 1835
-
-
Leroy, B.J.1
-
7
-
-
77954839226
-
-
While this work was being written we learned that scattering of MDFs against a velocity barrier has also been studied by A. Concha and Z. Teanovic, arXiv:0912.0493 (unpublished)
-
While this work was being written we learned that scattering of MDFs against a velocity barrier has also been studied by A. Concha and Z. Teanovic, arXiv:0912.0493 (unpublished).
-
-
-
-
8
-
-
65549147743
-
-
10.1088/0953-8984/21/9/095501;
-
N. M. R. Peres, J. Phys: Condens. Matter 21, 095501 (2009) 10.1088/0953-8984/21/9/095501
-
(2009)
J. Phys: Condens. Matter
, vol.21
, pp. 095501
-
-
Peres, N.M.R.1
-
9
-
-
35148845554
-
-
a position-dependent velocity has also been considered by, 10.1103/PhysRevB.76.165409
-
a position-dependent velocity has also been considered by F. de Juan, Phys. Rev. B 76, 165409 (2007) in the context of curved graphene. 10.1103/PhysRevB.76.165409
-
(2007)
Phys. Rev. B
, vol.76
, pp. 165409
-
-
De Juan, F.1
-
10
-
-
33748296088
-
-
10.1038/nphys384;
-
M. I. Katsnelson, Nat. Phys. 2, 620 (2006) 10.1038/nphys384
-
(2006)
Nat. Phys.
, vol.2
, pp. 620
-
-
Katsnelson, M.I.1
-
11
-
-
62049085404
-
-
for recent experimental studies of Klein tunneling see, 10.1038/nphys1198;
-
for recent experimental studies of Klein tunneling see A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009) 10.1038/nphys1198
-
(2009)
Nat. Phys.
, vol.5
, pp. 222
-
-
Young, A.F.1
Kim, P.2
-
12
-
-
59449085246
-
-
10.1103/PhysRevLett.102.026807
-
N. Stander, Phys. Rev. Lett. 102, 026807 (2009). 10.1103/PhysRevLett.102. 026807
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 026807
-
-
Stander, N.1
-
13
-
-
77954855707
-
-
The reflection coefficient r in Eq. is given by rη,ξ ( θ1 ) = (ξ-1 ) exp (i θ1 ) sin ( qx η/k ) sin ( θ1 ) / Dη,ξ ( θ1 ), with Dη,ξ ( θ1 ) = (ξ qx /k ) cos ( qx η/k ) cos ( θ1 ) -isin ( qx η/k ) [1-ξ sin2 ( θ1 ) ].
-
The reflection coefficient r in Eq. is given by r η, ξ (θ 1) = (ξ - 1) exp (i θ 1) sin (q x η / k) sin (θ 1) / D η, ξ (θ 1), with D η, ξ (θ 1) = (ξ q x / k) cos (q x η / k) cos (θ 1) - i sin (q x η / k) [1 - ξ sin 2 (θ 1)].
-
-
-
-
14
-
-
77954844164
-
-
) 2 in the function Cη,ξ ( θ1 ), with s=sgn (E) sgn (E- V0 ). This implies that for any velocity v2 we can find a value of the barrier height, V0 =E- |E| /ξ, which gives the same transmission probability. On the other hand, not every problem of scattering through a potential barrier can be mapped into a velocity-barrier problem: the mapping exists only if s=1.
-
) 2 in the function C η, ξ (θ 1), with s = sgn (E) sgn (E - V 0). This implies that for any velocity v 2 we can find a value of the barrier height, V 0 = E - | E | / ξ, which gives the same transmission probability. On the other hand, not every problem of scattering through a potential barrier can be mapped into a velocity-barrier problem: the mapping exists only if s = 1.
-
-
-
-
15
-
-
40949151918
-
-
10.1103/PhysRevB.77.081411
-
M. Polini, Phys. Rev. B 77, 081411 (R) (2008). 10.1103/PhysRevB.77.081411
-
(2008)
Phys. Rev. B
, vol.77
, pp. 081411
-
-
Polini, M.1
-
16
-
-
40949111799
-
-
10.1103/PhysRevB.77.081412
-
E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 081412 (R) (2008). 10.1103/PhysRevB.77.081412
-
(2008)
Phys. Rev. B
, vol.77
, pp. 081412
-
-
Hwang, E.H.1
Das Sarma, S.2
-
17
-
-
34547333532
-
-
10.1103/PhysRevLett.98.236601
-
Y. Barlas, Phys. Rev. Lett. 98, 236601 (2007). 10.1103/PhysRevLett.98. 236601
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 236601
-
-
Barlas, Y.1
-
18
-
-
43949106541
-
-
The impact of screening due to metal gates or high-density 2D electron gases on Fermi-liquid parameters has been recently studied experimentally in the context of the metal-insulator transition:, 10.1103/PhysRevB.77.201402
-
The impact of screening due to metal gates or high-density 2D electron gases on Fermi-liquid parameters has been recently studied experimentally in the context of the metal-insulator transition: L. H. Ho, Phys. Rev. B 77, 201402 (R) (2008). 10.1103/PhysRevB.77.201402
-
(2008)
Phys. Rev. B
, vol.77
, pp. 201402
-
-
Ho, L.H.1
-
19
-
-
34249883885
-
-
10.1016/j.ssc.2007.04.035
-
M. Polini, Solid State Commun. 143, 58 (2007). 10.1016/j.ssc.2007.04.035
-
(2007)
Solid State Commun.
, vol.143
, pp. 58
-
-
Polini, M.1
-
20
-
-
65549120361
-
-
10.1103/PhysRevLett.102.176804
-
G. Li, Phys. Rev. Lett. 102, 176804 (2009). 10.1103/PhysRevLett.102. 176804
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 176804
-
-
Li, G.1
-
21
-
-
84923580037
-
-
See, e.g., Cambridge University Press, Cambridge
-
See, e.g., G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005), Chap..
-
(2005)
Quantum Theory of the Electron Liquid
-
-
Giuliani, G.F.1
Vignale, G.2
-
22
-
-
43049170468
-
-
/2 evaluated at z=0 (where the graphene sheet is located). The electrostatic potential Φ (ρ,z ) can be simply obtained from the method of image charges and satisfies the boundary condition Φ (ρ,d ) =0. This simple form of Vd (q) is true if no dielectric media other than air are located underneath or above the graphene flake [see inset in Fig. ]. For the sake of simplicity the data reported in Fig. have been obtained for such suspended sheets [, 10.1016/j.ssc.2008.02.024;
-
/ 2 evaluated at z = 0 (where the graphene sheet is located). The electrostatic potential Φ (ρ, z) can be simply obtained from the method of image charges and satisfies the boundary condition Φ (ρ, d) = 0. This simple form of V d (q) is true if no dielectric media other than air are located underneath or above the graphene flake [see inset in Fig.]. For the sake of simplicity the data reported in Fig. have been obtained for such suspended sheets [K. I. Bolotin, Solid State Commun. 146, 351 (2008) 10.1016/j.ssc.2008. 02.024
-
(2008)
Solid State Commun.
, vol.146
, pp. 351
-
-
Bolotin, K.I.1
-
23
-
-
49449091072
-
-
10.1038/nnano.2008.199
-
X. Du, Nature Nanotech. 3, 491 (2008)]. In this case, apart from electron density n and metal-graphene distance d, the only parameter that controls v / v is the fine structure constant α ee = e 2 / (v) 2.2. 10.1038/nnano.2008. 199
-
(2008)
Nature Nanotech.
, vol.3
, pp. 491
-
-
Du, X.1
-
24
-
-
67650254144
-
-
10.1038/nphys1294;
-
J. Moore, Nat. Phys. 5, 378 (2009) 10.1038/nphys1294
-
(2009)
Nat. Phys.
, vol.5
, pp. 378
-
-
Moore, J.1
-
25
-
-
67650262991
-
-
10.1038/nphys1274;
-
Y. Xia, Nat. Phys. 5, 398 (2009) 10.1038/nphys1274
-
(2009)
Nat. Phys.
, vol.5
, pp. 398
-
-
Xia, Y.1
-
26
-
-
67650260772
-
-
10.1038/nphys1270
-
H. Zhang, Nat. Phys. 5, 438 (2009). 10.1038/nphys1270
-
(2009)
Nat. Phys.
, vol.5
, pp. 438
-
-
Zhang, H.1
-
28
-
-
68949108477
-
-
10.1103/PhysRevB.79.241406
-
M. Gibertini, Phys. Rev. B 79, 241406 (R) (2009). 10.1103/PhysRevB.79. 241406
-
(2009)
Phys. Rev. B
, vol.79
, pp. 241406
-
-
Gibertini, M.1
-
29
-
-
30644473142
-
-
See also, 10.1021/nl0518472
-
See also C. Flindt, Nano Lett. 5, 2515 (2005) for a discussion of antidot lateral superlattices for quantum computation. 10.1021/nl0518472
-
(2005)
Nano Lett.
, vol.5
, pp. 2515
-
-
Flindt, C.1
-
30
-
-
34547298111
-
-
10.1103/PhysRevLett.98.260402;
-
S. L. Zhu, Phys. Rev. Lett. 98, 260402 (2007) 10.1103/PhysRevLett.98. 260402
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 260402
-
-
Zhu, S.L.1
-
31
-
-
56749107450
-
-
10.1088/1367-2630/10/10/103027
-
B. Wunsch, New J. Phys. 10, 103027 (2008). 10.1088/1367-2630/10/10/103027
-
(2008)
New J. Phys.
, vol.10
, pp. 103027
-
-
Wunsch, B.1
-
32
-
-
40749114052
-
-
10.1103/PhysRevLett.100.013904;
-
F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904 (2008) 10.1103/PhysRevLett.100.013904
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 013904
-
-
Haldane, F.D.M.1
Raghu, S.2
-
33
-
-
49149100753
-
-
10.1103/PhysRevB.78.045122
-
R. A. Sepkhanov, Phys. Rev. B 78, 045122 (2008). 10.1103/PhysRevB.78. 045122
-
(2008)
Phys. Rev. B
, vol.78
, pp. 045122
-
-
Sepkhanov, R.A.1
|