-
1
-
-
84966219173
-
Elliptic curves and primality proving
-
A.O.L. Atkin, F. Morain, Elliptic curves and primality proving. Math. Comput. 61, 29-67 (1993).
-
(1993)
Math. Comput.
, vol.61
, pp. 29-67
-
-
Atkin, A.O.L.1
Morain, F.2
-
2
-
-
84974710254
-
Elliptic curves of prime order over optimal extension fields for use in cryptography
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
H. Baier, Elliptic curves of prime order over optimal extension fields for use in cryptography, in Progress in Cryptology-INDOCRYPT 2001. Lecture Notes in Computer Science, vol. 2247 (Springer, Berlin, 2001), pp. 99-107.
-
(2001)
Progress in Cryptology-INDOCRYPT 2001
, vol.2247
, pp. 99-107
-
-
Baier, H.1
-
4
-
-
84947763991
-
Efficient construction of cryptographically strong elliptic curves
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
H. Baier, J. Buchmann, Efficient construction of cryptographically strong elliptic curves, in Progress in Cryptology-INDOCRYPT 2000. Lecture Notes in Computer Science, vol. 1977 (Springer, Berlin, 2000), pp. 191-202.
-
(2000)
Progress in Cryptology-INDOCRYPT 2000
, vol.1977
, pp. 191-202
-
-
Baier, H.1
Buchmann, J.2
-
5
-
-
84968518238
-
Factoring polynomials over large finite fields
-
E.R. Berlekamp, Factoring polynomials over large finite fields. Math. Comput. 24, 713-735 (1970).
-
(1970)
Math. Comput.
, vol.24
, pp. 713-735
-
-
Berlekamp, E.R.1
-
6
-
-
0003442756
-
-
London Mathematical Society Lecture Note Series, (Cambridge University Press, Cambridge)
-
I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography. London Mathematical Society Lecture Note Series, vol. 265 (Cambridge University Press, Cambridge, 1999).
-
(1999)
Elliptic Curves in Cryptography
, vol.265
-
-
Blake, I.1
Seroussi, G.2
Smart, N.3
-
7
-
-
84946840347
-
Short Signatures from the Weil Pairing
-
Advances in Cryptology - ASIACRYPT 2001
-
D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in ASIACRYPT 2001. Lecture Notes in Computer Science, vol. 2248 (Springer, Berlin, 2001), pp. 514-532. (Pubitemid 33371204)
-
(2002)
LECTURE NOTES IN COMPUTER SCIENCE
, Issue.2248
, pp. 514-532
-
-
Boneh, D.1
Lynn, B.2
Shacham, H.3
-
9
-
-
0009952601
-
Su di un metodo per la risoluzione in numeri interi dell' equazione
-
h=P . G. Mat. Battaglini 46, 33-90 (1908).
-
(1908)
h=P.G. Mat. Battaglini
, vol.46
, pp. 33-90
-
-
Cornacchia, G.1
-
10
-
-
0003484756
-
-
Wiley, New York
-
2 (Wiley, New York, 1989).
-
(1989)
2
-
-
Cox, D.A.1
-
11
-
-
84958522845
-
Comparing invariants for class fields of imaginary quadratic fields
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
A. Enge, F. Morain, Comparing invariants for class fields of imaginary quadratic fields, in Algebraic Number Theory-ANTS V. Lecture Notes in Computer Science, vol. 2369 (Springer, Berlin, 2002), pp. 252-266.
-
(2002)
Algebraic Number Theory-ANTS V
, vol.2369
, pp. 252-266
-
-
Enge, A.1
Morain, F.2
-
13
-
-
20444447977
-
Modular curves of composite level
-
A. Enge, R. Schertz, Modular curves of composite level. Acta Arith. 118(2), 129-141 (2005).
-
(2005)
Acta Arith
, vol.118
, Issue.2
, pp. 129-141
-
-
Enge, A.1
Schertz, R.2
-
14
-
-
84968502759
-
A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves
-
G. Frey, H.G. Rück, A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves. Math. Comput. 62, 865-874 (1994).
-
(1994)
Math. Comput.
, vol.62
, pp. 865-874
-
-
Frey, G.1
Rück, H.G.2
-
15
-
-
0040792609
-
The probability that the number of points on an elliptic curve over a finite field is prime
-
S. Galbraith, J. McKee, The probability that the number of points on an elliptic curve over a finite field is prime. J. Lond. Math. Soc. 62(3), 671-684 (2000).
-
(2000)
J. Lond. Math. Soc.
, vol.62
, Issue.3
, pp. 671-684
-
-
Galbraith, S.1
Mckee, J.2
-
16
-
-
33845713002
-
-
edition 3.1.1, September, Available at
-
GNU multiple precision library, edition 3.1.1, September 2000. Available at: http://www.swox.com/gmp.
-
(2000)
GNU Multiple Precision Library
-
-
-
18
-
-
79953903055
-
Explicit construction of the Hilbert class fields of imaginary quadratic fields by integer lattice reduction
-
May
-
E. Kaltofen, N. Yui, Explicit construction of the Hilbert class fields of imaginary quadratic fields by integer lattice reduction. Research Report 89-13, Rensselaer Polytechnic Institute, May 1989.
-
(1989)
Research Report 89-13, Rensselaer Polytechnic Institute
-
-
Kaltofen, E.1
Yui, N.2
-
20
-
-
84938086826
-
A software library for elliptic curve cryptography
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
E. Konstantinou, Y. Stamatiou, C. Zaroliagis, A software library for elliptic curve cryptography, in Proc. 10th European Symposium on Algorithms-ESA 2002 (Engineering and Applications Track). Lecture Notes in Computer Science, vol. 2461 (Springer, Berlin, 2002), pp. 625-637.
-
(2002)
Proc. 10th European Symposium on Algorithms-ESA 2002 (Engineering and Applications Track)
, vol.2461
, pp. 625-637
-
-
Konstantinou, E.1
Stamatiou, Y.2
Zaroliagis, C.3
-
21
-
-
35248866341
-
On the efficient generation of elliptic curves over prime fields
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
E. Konstantinou, Y. Stamatiou, C. Zaroliagis, On the efficient generation of elliptic curves over prime fields, in Cryptographic Hardware and Embedded Systems-CHES 2002. Lecture Notes in Computer Science, vol. 2523 (Springer, Berlin, 2002), pp. 333-348.
-
(2002)
Cryptographic Hardware and Embedded Systems-CHES 2002
, vol.2523
, pp. 333-348
-
-
Konstantinou, E.1
Stamatiou, Y.2
Zaroliagis, C.3
-
22
-
-
0346895370
-
On the construction of prime order elliptic curves
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
E. Konstantinou, Y.C. Stamatiou, C. Zaroliagis, On the construction of prime order elliptic curves, in Progress in Cryptology-INDOCRYPT 2003. Lecture Notes in Computer Science, vol. 2904 (Springer, Berlin, 2003), pp. 309-322.
-
(2003)
Progress in Cryptology-INDOCRYPT 2003
, vol.2904
, pp. 309-322
-
-
Konstantinou, E.1
Stamatiou, Y.C.2
Zaroliagis, C.3
-
23
-
-
24944508069
-
Generating prime order elliptic curves: Difficulties and efficiency considerations
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
E. Konstantinou, A. Kontogeorgis, Y. Stamatiou, C. Zaroliagis, Generating prime order elliptic curves: difficulties and efficiency considerations, in International Conference on Information Security and Cryptology-ICISC 2004. Lecture Notes in Computer Science, vol. 3506 (Springer, Berlin, 2005), pp. 261-278.
-
(2005)
International Conference on Information Security and Cryptology-ICISC 2004
, vol.3506
, pp. 261-278
-
-
Konstantinou, E.1
Kontogeorgis, A.2
Stamatiou, Y.3
Zaroliagis, C.4
-
24
-
-
85009967725
-
Constructing elliptic curves with given group order over large finite fields
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
G.J. Lay, H. Zimmer, Constructing elliptic curves with given group order over large finite fields, in Algorithmic Number Theory-ANTS-I. Lecture Notes in Computer Science, vol. 877 (Springer, Berlin, 1994), pp. 250-263.
-
(1994)
Algorithmic Number Theory-ANTS-I
, vol.877
, pp. 250-263
-
-
Lay, G.J.1
Zimmer, H.2
-
25
-
-
84862483707
-
-
LiDIA. Technical University of Darmstadt. Available from
-
LiDIA. A library for computational number theory. Technical University of Darmstadt. Available from http://www.informatik.tu-darmstadt.de/TI/LiDIA/ Welcome.html.
-
A Library for Computational Number Theory
-
-
-
27
-
-
84959046713
-
Characterization of Elliptic Curve Traces under FR-Reduction
-
Information Security and Cryptology - ICISC 2000
-
A. Miyaji, M. Nakabayashi, S. Takano, Characterization of elliptic curve traces under FR-reduction, in International Conference on Information Security and Cryptology-ICISC 2000. Lecture Notes in Computer Science, vol. 2015 (Springer, Berlin, 2001), pp. 90-108. (Pubitemid 33256448)
-
(2001)
LECTURE NOTES IN COMPUTER SCIENCE
, Issue.2015
, pp. 90-108
-
-
Miyaji, A.1
Nakabayashi, M.2
Takano, S.3
-
28
-
-
0035336179
-
New explicit conditions of elliptic curve traces for FR-reduction
-
A. Miyaji, M. Nakabayashi, S. Takano, New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. Fundam. E84-A (5), 1234-1243 (2001). (Pubitemid 32486851)
-
(2001)
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
, vol.E84-A
, Issue.5
, pp. 1234-1243
-
-
Miyaji, A.1
Nakabayashi, M.2
Takano, S.3
-
32
-
-
84919085619
-
An improved algorithm for computing logarithms over GF(p) and its cryptographic significance
-
G.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106-110 (1978).
-
(1978)
IEEE Trans. Inf. Theory
, vol.24
, pp. 106-110
-
-
Pohlig, G.C.1
Hellman, M.E.2
-
33
-
-
0343623059
-
Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves
-
T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comment. Math. Univ. St. Pauli 47, 81-91 (1998).
-
(1998)
Comment. Math. Univ. St. Pauli
, vol.47
, pp. 81-91
-
-
Satoh, T.1
Araki, K.2
-
34
-
-
84944900709
-
Generating elliptic curves of prime order
-
Lecture Notes in Computer Science, (Springer, Berlin)
-
E. Savaş, T.A. Schmidt, Ç.K. Koç, Generating elliptic curves of prime order, in Cryptographic Hardware and Embedded Systems-CHES 2001. Lecture Notes in Computer Science, vol. 2162 (Springer, Berlin, 2001), pp. 145-161.
-
(2001)
Cryptographic Hardware and Embedded Systems-CHES 2001
, vol.2162
, pp. 145-161
-
-
Savaş, E.1
Schmidt, T.A.2
Koç, Ç.K.3
-
35
-
-
85009914352
-
Weber's class invariants revisited
-
R. Schertz, Weber's class invariants revisited. J. Théor. Nr. Bordx. 4, 325-343 (2002).
-
(2002)
J. Théor. Nr. Bordx.
, vol.4
, pp. 325-343
-
-
Schertz, R.1
-
36
-
-
0001219865
-
Counting points on elliptic curves over finite fields
-
R. Schoof, Counting points on elliptic curves over finite fields. J. Théor. Nr. Bordx. 7, 219-254 (1995).
-
(1995)
J. Théor. Nr. Bordx.
, vol.7
, pp. 219-254
-
-
Schoof, R.1
-
39
-
-
0003828291
-
-
3rd edn. (Chapman & Hall/CRC, Boca Raton)
-
I. Stewart, Galois Theory, 3rd edn. (Chapman & Hall/CRC, Boca Raton, 2004).
-
(2004)
Galois Theory
-
-
Stewart, I.1
|