-
1
-
-
8844241460
-
Class discovery and classification of tumor samples using mixture modeling of gene expression data -a unified approach
-
R. Alexandridis, S. Lin and M. Irwin, Class discovery and classification of tumor samples using mixture modeling of gene expression data -a unified approach, Bioinformatics 20 (2004) 2545-2552.
-
(2004)
Bioinformatics
, vol.20
, pp. 2545-2552
-
-
Alexandridis, R.1
Lin, S.2
Irwin, M.3
-
2
-
-
15844371192
-
Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
-
M. H. Asyali and M. Alci, Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods, Bioinformatics 21(5) (2005) 644-649.
-
(2005)
Bioinformatics
, vol.21
, Issue.5
, pp. 644-649
-
-
Asyali, M.H.1
Alci, M.2
-
3
-
-
10044261725
-
A rival penalized em algorithm towards maximizing weighted likelihood for density mixture clustering with automatic model selection
-
Cambridge, United Kingdom
-
Y. M. Cheung, A rival penalized em algorithm towards maximizing weighted likelihood for density mixture clustering with automatic model selection, Proc. 17th Int. Conf. Pattern Recognition (ICPR'04) (Cambridge, United Kingdom, 2004), pp. 633-636.
-
(2004)
Proc. 17th Int. Conf. Pattern Recognition (ICPR'04)
, pp. 633-636
-
-
Cheung, Y.M.1
-
4
-
-
20844432428
-
Maximum weighted likelihood via rival penalized em for density mixture clustering with automatic model selection
-
Y. M. Cheung, Maximum weighted likelihood via rival penalized em for density mixture clustering with automatic model selection, IEEE Trans. Knowl. Data Engin. 17(6) (2005) 750-761.
-
(2005)
IEEE Trans. Knowl. Data Engin
, vol.17
, Issue.6
, pp. 750-761
-
-
Cheung, Y.M.1
-
5
-
-
0029196051
-
Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
-
C. Chinrungrueng and C. H. Sequin, Optimal adaptive k-means algorithm with dynamic adjustment of learning rate, IEEE Trans. Neural Networks 6(1) (1995) 157-169.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, Issue.1
, pp. 157-169
-
-
Chinrungrueng, C.1
Sequin, C.H.2
-
6
-
-
0032112293
-
A genomewide transcriptional analysis of the mitotic cell cycle
-
R. J. Cho, M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T. G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart and R. W. Davis, A genomewide transcriptional analysis of the mitotic cell cycle, Molecular Cell 2 (1998) 65-73.
-
(1998)
Molecular Cell
, vol.2
, pp. 65-73
-
-
Cho, R.J.1
Campbell, M.J.2
Winzeler, E.A.3
Steinmetz, L.4
Conway, A.5
Wodicka, L.6
Wolfsberg, T.G.7
Gabrielian, A.E.8
Landsman, D.9
Lockhart, D.J.10
Davis, R.W.11
-
7
-
-
34248648503
-
Unsupervised learning of Gaussian mixtures based on variational component splitting
-
C. Constantinopoulos and A. Likas, Unsupervised learning of Gaussian mixtures based on variational component splitting, IEEE Trans. Neural Networks 18 (2007) 745-755.
-
(2007)
IEEE Trans. Neural Networks
, vol.18
, pp. 745-755
-
-
Constantinopoulos, C.1
Likas, A.2
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Stat. Soc. B39 (1977) 1-38.
-
(1977)
J. Roy. Stat. Soc
, vol.B39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
9
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
S. Dudoit, J. Fridlyand and T. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data, J. Am. Stat. Assoc. 97 (2002) 77-87.
-
(2002)
J. Am. Stat. Assoc
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
10
-
-
46149129762
-
Stochastic approximation revisited
-
A. Dvoretzky, Stochastic approximation revisited, Adv. Appl. Math. 7 (1986) 220-227.
-
(1986)
Adv. Appl. Math
, vol.7
, pp. 220-227
-
-
Dvoretzky, A.1
-
12
-
-
0742306126
-
Enhanced software for model-based clustering, discriminant analysis, and density estimation: MCLUST
-
C. Fraley and A. E. Raftery, Enhanced software for model-based clustering, discriminant analysis, and density estimation: MCLUST, J. Classif. 20 (2003) 263-286.
-
(2003)
J. Classif
, vol.20
, pp. 263-286
-
-
Fraley, C.1
Raftery, A.E.2
-
13
-
-
0037223402
-
P38 mitogen-activated protein kinase-dependent and -independent signaling of mrna stability of au-rich element-containing transcripts
-
M. A. Frevel, T. Bakheet, A. M. Silva, J. G. Hissong, K. S. Khabar and B. R. Williams, p38 mitogen-activated protein kinase-dependent and -independent signaling of mrna stability of au-rich element-containing transcripts, Mole. Cell. Biol. 23 (2003) 425-436.
-
(2003)
Mole. Cell. Biol
, vol.23
, pp. 425-436
-
-
Frevel, M.A.1
Bakheet, T.2
Silva, A.M.3
Hissong, J.G.4
Khabar, K.S.5
Williams, B.R.6
-
14
-
-
0036188158
-
Mixture modeling of gene expression data from microarray experiments
-
D. Ghosh and A. M. Chinnaiyan, Mixture modeling of gene expression data from microarray experiments, Bioinformatics 18 (2002) 275-286.
-
(2002)
Bioinformatics
, vol.18
, pp. 275-286
-
-
Ghosh, D.1
Chinnaiyan, A.M.2
-
15
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield and E. Lander, Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, Science 286 (1999) 531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.6
Coller, H.7
Loh, M.8
Downing, J.9
Caligiuri, M.10
Bloomfield, C.11
Lander, E.12
-
17
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
G. J. McLachlan, R. W. Bean and D. Peel, A mixture model-based approach to the clustering of microarray expression data, Bioinformatics 18 (2002) 413-422.
-
(2002)
Bioinformatics
, vol.18
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
18
-
-
24344483148
-
Genetic-based em algorithm for learning Gaussian mixture models
-
F. Pernkopf and D. Boucha ra, Genetic-based EM algorithm for learning Gaussian mixture models, IEEE Trans. Patt. Anal. Mach. Intell. 27 (2005) 1344-1348.
-
(2005)
IEEE Trans. Patt. Anal. Mach. Intell
, vol.27
, pp. 1344-1348
-
-
Pernkopf, F.1
Bouchara, D.2
-
19
-
-
4444356084
-
Supervised cluster analysis for microarray data based on multivariate Gaussian mixture
-
Y. Qu and S. Xu, Supervised cluster analysis for microarray data based on multivariate Gaussian mixture, Bioinformatics 20 (2004) 1905-1913.
-
(2004)
Bioinformatics
, vol.20
, pp. 1905-1913
-
-
Qu, Y.1
Xu, S.2
-
20
-
-
0033027794
-
Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic di® erentiation
-
P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander and T. R. Golub, Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic di® erentiation, Proc. Natl. Acad. Sci. USA 96 (1999) 2907-2912.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 2907-2912
-
-
Tamayo, P.1
Slonim, D.2
Mesirov, J.3
Zhu, Q.4
Kitareewan, S.5
Dmitrovsky, E.6
Lander, E.S.7
Golub, T.R.8
-
21
-
-
0033028596
-
Systematic determination of genetic network architecture
-
S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho and G. M. Church, Systematic determination of genetic network architecture, Nature Genet. 2 (1999) 281-285.
-
(1999)
Nature Genet
, vol.2
, pp. 281-285
-
-
Tavazoie, S.1
Hughes, J.D.2
Campbell, M.J.3
Cho, R.J.4
Church, G.M.5
-
22
-
-
0012393308
-
Pattern clustering by multivariate mixture analysis
-
J. Wolfe, Pattern clustering by multivariate mixture analysis, Multivar. Behav. Res. 5 (1970) 329-350.
-
(1970)
Multivar. Behav. Res
, vol.5
, pp. 329-350
-
-
Wolfe, J.1
-
23
-
-
0034782618
-
Model-based clustering and data transformations for gene expression data
-
K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery and W. L. Ruzzo, Model-based clustering and data transformations for gene expression data, Bioinformatics 17 (2001) 977-987.
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.Y.1
Fraley, C.2
Murua, A.3
Raftery, A.E.4
Ruzzo, W.L.5
-
24
-
-
41349091869
-
Gene function prediction using labeled and unlabeled data
-
X.-M. Zhao, Y. Wang, L. Chen and K. Aihara, Gene function prediction using labeled and unlabeled data, BMC Bioinformatics 9 (2008) 57.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 57
-
-
Zhao, X.-M.1
Wang, Y.2
Chen, L.3
Aihara, K.4
-
25
-
-
50949093079
-
Protein function prediction with high-throughput data
-
X.-M. Zhao, L. Chen and K. Aihara, Protein function prediction with high-throughput data, Amino Acids 35 (2008) 517-530.
-
(2008)
Amino Acids
, vol.35
, pp. 517-530
-
-
Zhao, X.-M.1
Chen, L.2
Aihara, K.3
|