메뉴 건너뛰기




Volumn 24, Issue 4, 2010, Pages 651-666

Analysis of gene expression data using rpem algorithm in normal mixture model with dynamic adjustment of learning rate

Author keywords

Clustering; dynamic adjustment of learning rate; gene expression; normal mixture model; rival penalized EM algorithm

Indexed keywords

DYNAMIC ADJUSTMENT; DYNAMIC ADJUSTMENT OF LEARNING RATE; EM ALGORITHMS; LEARNING RATES; NORMAL MIXTURE MODELS;

EID: 77954569169     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001410008056     Document Type: Article
Times cited : (10)

References (25)
  • 1
    • 8844241460 scopus 로고    scopus 로고
    • Class discovery and classification of tumor samples using mixture modeling of gene expression data -a unified approach
    • R. Alexandridis, S. Lin and M. Irwin, Class discovery and classification of tumor samples using mixture modeling of gene expression data -a unified approach, Bioinformatics 20 (2004) 2545-2552.
    • (2004) Bioinformatics , vol.20 , pp. 2545-2552
    • Alexandridis, R.1    Lin, S.2    Irwin, M.3
  • 2
    • 15844371192 scopus 로고    scopus 로고
    • Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
    • M. H. Asyali and M. Alci, Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods, Bioinformatics 21(5) (2005) 644-649.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 644-649
    • Asyali, M.H.1    Alci, M.2
  • 3
    • 10044261725 scopus 로고    scopus 로고
    • A rival penalized em algorithm towards maximizing weighted likelihood for density mixture clustering with automatic model selection
    • Cambridge, United Kingdom
    • Y. M. Cheung, A rival penalized em algorithm towards maximizing weighted likelihood for density mixture clustering with automatic model selection, Proc. 17th Int. Conf. Pattern Recognition (ICPR'04) (Cambridge, United Kingdom, 2004), pp. 633-636.
    • (2004) Proc. 17th Int. Conf. Pattern Recognition (ICPR'04) , pp. 633-636
    • Cheung, Y.M.1
  • 4
    • 20844432428 scopus 로고    scopus 로고
    • Maximum weighted likelihood via rival penalized em for density mixture clustering with automatic model selection
    • Y. M. Cheung, Maximum weighted likelihood via rival penalized em for density mixture clustering with automatic model selection, IEEE Trans. Knowl. Data Engin. 17(6) (2005) 750-761.
    • (2005) IEEE Trans. Knowl. Data Engin , vol.17 , Issue.6 , pp. 750-761
    • Cheung, Y.M.1
  • 5
    • 0029196051 scopus 로고
    • Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
    • C. Chinrungrueng and C. H. Sequin, Optimal adaptive k-means algorithm with dynamic adjustment of learning rate, IEEE Trans. Neural Networks 6(1) (1995) 157-169.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 157-169
    • Chinrungrueng, C.1    Sequin, C.H.2
  • 7
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of Gaussian mixtures based on variational component splitting
    • C. Constantinopoulos and A. Likas, Unsupervised learning of Gaussian mixtures based on variational component splitting, IEEE Trans. Neural Networks 18 (2007) 745-755.
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. Dempster, N. Laird and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Stat. Soc. B39 (1977) 1-38.
    • (1977) J. Roy. Stat. Soc , vol.B39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 9
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand and T. Speed, Comparison of discrimination methods for the classification of tumors using gene expression data, J. Am. Stat. Assoc. 97 (2002) 77-87.
    • (2002) J. Am. Stat. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 10
    • 46149129762 scopus 로고
    • Stochastic approximation revisited
    • A. Dvoretzky, Stochastic approximation revisited, Adv. Appl. Math. 7 (1986) 220-227.
    • (1986) Adv. Appl. Math , vol.7 , pp. 220-227
    • Dvoretzky, A.1
  • 12
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced software for model-based clustering, discriminant analysis, and density estimation: MCLUST
    • C. Fraley and A. E. Raftery, Enhanced software for model-based clustering, discriminant analysis, and density estimation: MCLUST, J. Classif. 20 (2003) 263-286.
    • (2003) J. Classif , vol.20 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 13
    • 0037223402 scopus 로고    scopus 로고
    • P38 mitogen-activated protein kinase-dependent and -independent signaling of mrna stability of au-rich element-containing transcripts
    • M. A. Frevel, T. Bakheet, A. M. Silva, J. G. Hissong, K. S. Khabar and B. R. Williams, p38 mitogen-activated protein kinase-dependent and -independent signaling of mrna stability of au-rich element-containing transcripts, Mole. Cell. Biol. 23 (2003) 425-436.
    • (2003) Mole. Cell. Biol , vol.23 , pp. 425-436
    • Frevel, M.A.1    Bakheet, T.2    Silva, A.M.3    Hissong, J.G.4    Khabar, K.S.5    Williams, B.R.6
  • 14
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modeling of gene expression data from microarray experiments
    • D. Ghosh and A. M. Chinnaiyan, Mixture modeling of gene expression data from microarray experiments, Bioinformatics 18 (2002) 275-286.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 17
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • G. J. McLachlan, R. W. Bean and D. Peel, A mixture model-based approach to the clustering of microarray expression data, Bioinformatics 18 (2002) 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 18
    • 24344483148 scopus 로고    scopus 로고
    • Genetic-based em algorithm for learning Gaussian mixture models
    • F. Pernkopf and D. Boucha ra, Genetic-based EM algorithm for learning Gaussian mixture models, IEEE Trans. Patt. Anal. Mach. Intell. 27 (2005) 1344-1348.
    • (2005) IEEE Trans. Patt. Anal. Mach. Intell , vol.27 , pp. 1344-1348
    • Pernkopf, F.1    Bouchara, D.2
  • 19
    • 4444356084 scopus 로고    scopus 로고
    • Supervised cluster analysis for microarray data based on multivariate Gaussian mixture
    • Y. Qu and S. Xu, Supervised cluster analysis for microarray data based on multivariate Gaussian mixture, Bioinformatics 20 (2004) 1905-1913.
    • (2004) Bioinformatics , vol.20 , pp. 1905-1913
    • Qu, Y.1    Xu, S.2
  • 22
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • J. Wolfe, Pattern clustering by multivariate mixture analysis, Multivar. Behav. Res. 5 (1970) 329-350.
    • (1970) Multivar. Behav. Res , vol.5 , pp. 329-350
    • Wolfe, J.1
  • 23
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery and W. L. Ruzzo, Model-based clustering and data transformations for gene expression data, Bioinformatics 17 (2001) 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 24
    • 41349091869 scopus 로고    scopus 로고
    • Gene function prediction using labeled and unlabeled data
    • X.-M. Zhao, Y. Wang, L. Chen and K. Aihara, Gene function prediction using labeled and unlabeled data, BMC Bioinformatics 9 (2008) 57.
    • (2008) BMC Bioinformatics , vol.9 , pp. 57
    • Zhao, X.-M.1    Wang, Y.2    Chen, L.3    Aihara, K.4
  • 25
    • 50949093079 scopus 로고    scopus 로고
    • Protein function prediction with high-throughput data
    • X.-M. Zhao, L. Chen and K. Aihara, Protein function prediction with high-throughput data, Amino Acids 35 (2008) 517-530.
    • (2008) Amino Acids , vol.35 , pp. 517-530
    • Zhao, X.-M.1    Chen, L.2    Aihara, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.