메뉴 건너뛰기




Volumn 4, Issue 1, 2009, Pages

Elevating model predictive control using feedforward artificial neural networks: A review

Author keywords

feedforward artificial neural network (FANN); model predictive control; neural networks; neural predictive control

Indexed keywords

ARTIFICIAL NEURAL NETWORKS; CHEMICAL ENGINEERS; CONTROL PROBLEMS; FEED-FORWARD; FEED-FORWARD ARTIFICIAL NEURAL NETWORKS; FEEDFORWARD ARTIFICIAL NEURAL NETWORK; FEEDFORWARD ARTIFICIAL NEURAL NETWORK (FANN); FUNCTIONAL RELATIONSHIP; LINEAR MODEL; MODEL-BASED CONTROL; MODEL-BASED CONTROL SCHEMES; MODELLING TECHNIQUES; MULTILAYERED NEURAL NETWORKS; NEURAL NETWORK MODEL; NEURAL-PREDICTIVE CONTROLS; NON-LINEAR; NON-LINEAR NEURONS; NONLINEAR NEURAL NETWORKS; OPTIMAL PERFORMANCE; PI CONTROLLER; PREDICTIVE CONTROL; PROCESS CONTROLLERS; PROCESS MODEL; SET-POINT TRACKING;

EID: 77954552357     PISSN: 19342659     EISSN: None     Source Type: Journal    
DOI: 10.2202/1934-2659.1424     Document Type: Review
Times cited : (7)

References (92)
  • 1
    • 70349622469 scopus 로고    scopus 로고
    • Artificial neural network based nonlinear model predictive control strategy
    • Al-Gallaf, E., Artificial Neural Network Based Nonlinear Model Predictive Control Strategy, Information Technology Journal, 2002, Vol. 1 No. 2, 173-179.
    • (2002) Information Technology Journal , vol.1 , Issue.2 , pp. 173-179
    • Al-Gallaf, E.1
  • 2
    • 43049160722 scopus 로고    scopus 로고
    • Modeling photosynthetically oxygenated biodegradation processes using artificial neural networks
    • 30 June
    • Arranz, A., Bordel, S., Villaverde, S., Zamarreo, J.M., Guieysse, B., and Munoz, R., Modeling photosynthetically oxygenated biodegradation processes using artificial neural networks, Journal of Hazardous Materials, 30 June 2008,Vol. 155, No. 1-2, 51-57.
    • (2008) Journal of Hazardous Materials , vol.155 , Issue.1-2 , pp. 51-57
    • Arranz, A.1    Bordel, S.2    Villaverde, S.3    Zamarreño, J.M.4    Guieysse, B.5    Munoz, R.6
  • 3
    • 0041493076 scopus 로고    scopus 로고
    • Nonlinear predictive control, chapter review of nonlinear model predictive control applications
    • Badgwell, T.A., and Qin, S.J., Nonlinear Predictive Control, chapter Review of Nonlinear Model Predictive Control Applications, IEE Control Engineering series, 2001.
    • (2001) IEE Control Engineering Series
    • Badgwell, T.A.1    Qin, S.J.2
  • 4
    • 0342484494 scopus 로고    scopus 로고
    • Artificial neural networks for modelling and predictive control of an industrial evaporation process
    • Benne, M., Grondin -Perez, B., Chabriat, J.P., Herve, P. Artificial neural networks for modelling and predictive control of an industrial evaporation process, Journal of Food Engineering, 2000, Vol. 46, 227-234.
    • (2000) Journal of Food Engineering , vol.46 , pp. 227-234
    • Benne, M.1    Grondin -Perez, B.2    Chabriat, J.P.3    Herve, P.4
  • 5
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical processes
    • Bhat, N., and McAvoy, T., Use of neural nets for dynamic modeling and control of chemical processes, Comput. Chem. Eng., 1990, Vol. 14, 573-583.
    • (1990) Comput. Chem. Eng. , vol.14 , pp. 573-583
    • Bhat, N.1    McAvoy, T.2
  • 7
    • 0142090717 scopus 로고    scopus 로고
    • Multistep model predictive control based on artificial neural networks
    • Chu, J.Z., Tsai, P.F., Tsai W.Y., Multistep model predictive control based on artificial neural networks. Indust Eng Chem Res, 2003, Vol.42, No.21, 5215-5228.
    • (2003) Indust Eng Chem Res , vol.42 , Issue.21 , pp. 5215-5228
    • Chu, J.Z.1    Tsai, P.F.2    Tsai, W.Y.3
  • 8
    • 16844364724 scopus 로고    scopus 로고
    • A comparative study of combined feedforward/feedback model predictive control for nonlinear systems
    • Chu, J.Z., Jang, S.S., and Chen, Y.N., A comparative study of combined feedforward/feedback model predictive control for nonlinear systems, Canadian Journal of Chemical Engineering, 2004, Vol. 82, No. 6, 1263-1272.
    • (2004) Canadian Journal of Chemical Engineering , vol.82 , Issue.6 , pp. 1263-1272
    • Chu, J.Z.1    Jang, S.S.2    Chen, Y.N.3
  • 9
    • 0026617166 scopus 로고
    • Comparing two neural networks for pattern based adaptive process control
    • Cooper, D. J., L. Megan, and J. Ralph F. Hinde, Comparing two neural networks for pattern based adaptive process control, AIChE J., 1992, Vol. 38, No.1, 41-55.
    • (1992) AIChE J. , vol.38 , Issue.1 , pp. 41-55
    • Cooper, D.J.1    Megan, L.2    Ralph, J.3    Hinde, F.4
  • 11
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenko G. Approximation by superposition of a sigmoidal function, Math Contr Signals Syst, 1989; Vol. 2, 303-314.
    • (1989) Math Contr Signals Syst , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 12
    • 77954559801 scopus 로고    scopus 로고
    • Neural network control of CSTR for reversible reaction using reverence model approach
    • (January-June)
    • Dauda O. Araromi, Tinuade J. Afolabi, Duncan F. Aloko, Neural Network Control of CSTR for Reversible Reaction Using Reverence Model Approach, Leonardo Journal of Sciences, (January-June), 2007, Vol.6, No.10, 25-40.
    • (2007) Leonardo Journal of Sciences , vol.6 , Issue.10 , pp. 25-40
    • Dauda, O.A.1    Tinuade, J.A.2    Duncan, F.A.3
  • 14
    • 77954549854 scopus 로고    scopus 로고
    • Model based predictive control
    • Invited Chapter Eolss Publishers Co Ltd, Oxford
    • De Keyser R., Model Based Predictive Control, Invited Chapter in UNESCO Encyclopaedia of Life Support Systems (EoLSS), Eolss Publishers Co Ltd, Oxford, 2003, 30.
    • (2003) UNESCO Encyclopaedia of Life Support Systems (EoLSS) , pp. 30
    • De Keyser, R.1
  • 15
    • 0026849112 scopus 로고
    • Towards improved penicillin fermentation via artificial neural networks
    • DiMassimo, C., Montague, G., Willis, M. J., Tham, M. T., and Morris, A. J., Towards improved penicillin fermentation via artificial neural networks, Comp Chem Eng, 1992, Vol. 16, No. 4, 382.
    • (1992) Comp Chem Eng , vol.16 , Issue.4 , pp. 382
    • Dimassimo, C.1    Montague, G.2    Willis, M.J.3    Tham, M.T.4    Morris, A.J.5
  • 16
    • 0030163940 scopus 로고    scopus 로고
    • Elaboration of a neural network system for semi-batch reactor temperature control: An experimental study
    • June
    • Dirion, J.L., Ettedgui, B., Cabassud, M., Lann, M. V. Le., Casamatta, G., Elaboration of a neural network system for semi-batch reactor temperature control: an experimental study, Chemical Engineering and Processing, June 1996, Vol. 35, No. 3, 225-234.
    • (1996) Chemical Engineering and Processing , vol.35 , Issue.3 , pp. 225-234
    • Dirion, J.L.1    Ettedgui, B.2    Cabassud, M.3    Lann, M.V.4    Casamatta, G.5
  • 18
    • 0033285084 scopus 로고    scopus 로고
    • Application of neural network control to distillation and an experimental comparison with other advanced controllers
    • Dutta, P., and Rhinehart, R. R., Application of neural network control to distillation and an experimental comparison with other advanced controllers, ISA Trans. 1999, 38, 251-278.
    • (1999) ISA Trans. , vol.38 , pp. 251-278
    • Dutta, P.1    Rhinehart, R.R.2
  • 20
    • 0042538707 scopus 로고    scopus 로고
    • Identification and control of anaerobic digesters using adaptive, on-line trained neural networks
    • Emmanouilides, C., Petrou, L., Identification and control of anaerobic digesters using adaptive, on-line trained neural networks, Computers & Chemical Engineering, 20 September 1996,Vol. 21, No.1, 113-143.
    • (1996) Computers & Chemical Engineering , vol.21 , Issue.1 , pp. 113-143
    • Emmanouilides, C.1    Petrou, L.2
  • 21
    • 0024668467 scopus 로고
    • Model predictive control: Theory and practice-A survey
    • Garcia, C.E., Prett, D.M. and Morari, M., Model predictive control: Theory and practice-A survey, Automatica, 1989, Vol. 25, No.3, 333-348.
    • (1989) Automatica , vol.25 , Issue.3 , pp. 333-348
    • Garcia, C.E.1    Prett, D.M.2    Morari, M.3
  • 22
    • 0020114413 scopus 로고
    • Internal model control-1. A unifying review and some new results
    • Garcia, C.E., and Morari, M., Internal Model Control-1. A Unifying Review and Some New Results, Ind. Eng. Chem. Process Des. and Dev, 1982,Vol. 21, 308-323.
    • (1982) Ind. Eng. Chem. Process Des. and Dev , vol.21 , pp. 308-323
    • Garcia, C.E.1    Morari, M.2
  • 23
    • 77954553627 scopus 로고    scopus 로고
    • Application of feed forward neural networks in modeling and closed loop control of a fed-batch crystallization process
    • Vienna, Austria, 29-31 March Transactions on Engineering, Computing and Technology
    • Georgieva P. and Feyo de Azevedo, S. Application of feed forward neural networks in modeling and closed loop control of a fed-batch crystallization process, International Conference on Computer Science, Vienna, Austria, 29-31 March 2006, Transactions on Engineering, Computing and Technology, 65-70.
    • (2006) International Conference on Computer Science , pp. 65-70
    • Georgieva, P.1    Feyo De Azevedo, S.2
  • 25
    • 0036131926 scopus 로고    scopus 로고
    • Improvements in the predictive capability of neural networks
    • Hoo, K., Sinzinger, E., & Piovoso, M., Improvements in the predictive capability of neural networks, Journal of Process Control, 2002, Vol. 12, 193-202.
    • (2002) Journal of Process Control , vol.12 , pp. 193-202
    • Hoo, K.1    Sinzinger, E.2    Piovoso, M.3
  • 26
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H., Multilayer feedforward networks are universal approximators, Neural networks, 1989, Vol. 2, No. 5, 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 27
    • 0040287998 scopus 로고    scopus 로고
    • Artificial neural network models of knowledge representation in chemical engineering
    • Hoskins, J. C., and Himmelblau, D.M., Artificial Neural Network models of knowledge representation in chemical engineering, Comput Chem Eng, 1998, Vol.12, 881.
    • (1998) Comput Chem Eng , vol.12 , pp. 881
    • Hoskins, J.C.1    Himmelblau, D.M.2
  • 28
    • 0026954775 scopus 로고
    • Neural networks for control systems a survey
    • Hunt, K. T., Sbarbaro, D., Zbikowski, R., and Gawthrop, P.J., Neural networks for control systems a survey, Automatica, 1992, Vol.24, No. 6, 1083-1112.
    • (1992) Automatica , vol.24 , Issue.6 , pp. 1083-1112
    • Hunt, K.T.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 29
    • 0032735194 scopus 로고    scopus 로고
    • Review of the applications of neural networks in chemical process control-simulation and online implementation
    • Hussain, M., Review of the Applications of Neural Networks in Chemical Process Control-Simulation and Online Implementation, Artificial Intelligence in Engineering, 1999, Vol. 13, 55-68.
    • (1999) Artificial Intelligence in Engineering , vol.13 , pp. 55-68
    • Hussain, M.1
  • 31
    • 0026853749 scopus 로고
    • Exploratory data analysis: A comparison of statistical methods with artificial neural networks
    • Joseph, B., Wang, F. H. and Shieh, D. S., Exploratory data analysis: A comparison of statistical methods with artificial neural networks, Comp Chem Eng, 1992, Vol. 16, 413.
    • (1992) Comp Chem Eng , vol.16 , pp. 413
    • Joseph, B.1    Wang, F.H.2    Shieh, D.S.3
  • 32
    • 58949091424 scopus 로고    scopus 로고
    • Perspectives for process systems engineering-personal views from academia and industry
    • Karsten-Ulrich Klatt, Wolfgang Marquardt 20 March
    • Karsten-Ulrich Klatt, Wolfgang Marquardt, Perspectives for process systems engineering-Personal views from academia and industry, Computers & Chemical Engineering, 20 March 2009, Vol. 33, No. 3, 536-550.
    • (2009) Computers & Chemical Engineering , vol.33 , Issue.3 , pp. 536-550
  • 33
    • 51249166773 scopus 로고
    • Designing fermentation media: A comparison of neural networks to factorial design
    • Kennedy, M. J., Prapulla, S. G., and Thakur, M. S., Designing fermentation media: a comparison of neural networks to factorial design, Biotechnol. Techn., 1992, 6, 293-298.
    • (1992) Biotechnol. Techn. , vol.6 , pp. 293-298
    • Kennedy, M.J.1    Prapulla, S.G.2    Thakur, M.S.3
  • 34
    • 0025414689 scopus 로고
    • A comparison between CMAC neural network control and two traditional adaptive control systems
    • April
    • Kraft, L.G., and Campagna, D.P., A comparison between CMAC neural network control and two traditional adaptive control systems, IEEE Contr. Syst. Mag., (April 1992), 36-43.
    • (1992) IEEE Contr. Syst. Mag. , pp. 36-43
    • Kraft, L.G.1    Campagna, D.P.2
  • 35
    • 0026849990 scopus 로고
    • Autoassociative neural networks
    • Kramer, M. A., Autoassociative neural networks, Comp Chem Eng, 1992, Vol. 16, 313.
    • (1992) Comp Chem Eng , vol.16 , pp. 313
    • Kramer, M.A.1
  • 36
    • 34047202145 scopus 로고    scopus 로고
    • Computationally efficient neural predictive control based on a feedforward architecture
    • 1657169, Proceedings of the 2006 American Control Conference
    • Kuure-Kinsey, M., Cutright R, Bequette, B.W., Computationally efficient neural predictive control based on a feedforward architecture, In Proceedings of the American Control Conference, Minneapolis, MN, IEEE, 2006, 2957-2962. (Pubitemid 46531270)
    • (2006) Proceedings of the American Control Conference , vol.2006 , pp. 2957-2962
    • Kuure-Kinsey, M.1    Cutright, R.2    Bequette, B.W.3
  • 37
    • 0029252259 scopus 로고
    • Model predictive control of an industrial packed bed reactor using neural networks
    • Kwaku O. Temeng, Phillip D. Schnelle, Thomas J. McAvoy, Model predictive control of an industrial packed bed reactor using neural networks, Journal of Process Control, 1995, Vol. 5, No. 1, 19-27.
    • (1995) Journal of Process Control , vol.5 , Issue.1 , pp. 19-27
    • Kwaku, O.T.1    Phillip, D.S.2    Thomas, J.M.3
  • 38
    • 34547506325 scopus 로고    scopus 로고
    • A family of model predictive control algorithms with artificial neural networks
    • Lawrynczuk, M., A family of model predictive control algorithms with artificial neural networks. Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 2, 217-232.
    • (2007) Int. J. Appl. Math. Comput. Sci. , vol.17 , Issue.2 , pp. 217-232
    • Lawrynczuk, M.1
  • 39
    • 33746219699 scopus 로고    scopus 로고
    • An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process
    • Springer
    • Lawrynczuk M., and Tatjewski P., An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process.-Lecture Notes in Artificial Intelligence, Springer, 2006, Vol. 4029, 76-85.
    • (2006) Lecture Notes in Artificial Intelligence , vol.4029 , pp. 76-85
    • Lawrynczuk, M.1    Tatjewski, P.2
  • 40
    • 0026819616 scopus 로고
    • A new scheme combining neural feedforward control with model-predictive control
    • Lee, M., and Park. S., A new scheme combining neural feedforward control with model-predictive control, AIChE J., 1992, Vol. 3, No. 2, 193-200.
    • (1992) AIChE J. , vol.3 , Issue.2 , pp. 193-200
    • Lee, M.1    Park, S.2
  • 41
    • 0032532847 scopus 로고    scopus 로고
    • Case study investigating the application of neural networks for process modeling and condition monitoring
    • Lennox, B., Rutherford, P., Montague G. A., and Haughin, C., Case study investigating the application of neural networks for process modeling and condition monitoring, Comp. Chem Eng, 1998, Vol. 22, No.11, 1573-1579.
    • (1998) Comp. Chem Eng , vol.22 , Issue.11 , pp. 1573-1579
    • Lennox, B.1    Rutherford, P.2    Montague, G.A.3    Haughin, C.4
  • 42
    • 33746029256 scopus 로고
    • Adaptive control of non-linear continuous-time systems using neural networks-general relative degree and MIMO cases
    • Liu, C.C., and Chen, F.C., Adaptive control of non-linear continuous-time systems using neural networks-general relative degree and MIMO cases, Int. J. Contr., 1993, Vol.58, 317-335.
    • (1993) Int. J. Contr. , vol.58 , pp. 317-335
    • Liu, C.C.1    Chen, F.C.2
  • 45
    • 0029379924 scopus 로고
    • Modelling and control of a packed distillation column using artificial neural networks
    • MacMurray, J.C., Himmelblau, D.M., Modelling and control of a packed distillation column using artificial neural networks., Comput Chem Engg 1995,Vol. 19, No.10, 1077-1088.
    • (1995) Comput Chem Engg , vol.19 , Issue.10 , pp. 1077-1088
    • MacMurray, J.C.1    Himmelblau, D.M.2
  • 46
    • 33749549459 scopus 로고    scopus 로고
    • Neural network based predictive control of a heat exchanger nonlinear process
    • Mahdi Jalili-Kharaajoo, and Babak N.Araabi , Neural Network Based Predictive Control Of A Heat Exchanger Nonlinear Process, Journal of Electrical & Electronics Engineering, 2004, Vol. 4, No. 2, 1219-1226.
    • (2004) Journal of Electrical & Electronics Engineering , vol.4 , Issue.2 , pp. 1219-1226
    • Mahdi, J.-K.1    Babak, N.A.2
  • 47
    • 0027112430 scopus 로고
    • A comparison of neural networks and partial least squares for deconvoluting fluorescence spectra
    • McAvoy, T. J., Su, H. T., Wang, N. S., He, M., Horvath, J., and Semerjian, H., 1992, A comparison of neural networks and partial least squares for deconvoluting fluorescence spectra, Biotechnol. Bioengn, 1992, Vol.9, No.40, 53-62.
    • (1992) Biotechnol. Bioengn , vol.9 , Issue.40 , pp. 53-62
    • McAvoy, T.J.1    Su, H.T.2    Wang, N.S.3    He, M.4    Horvath, J.5    Semerjian, H.6
  • 48
    • 77954545845 scopus 로고    scopus 로고
    • Feedforward neural networks for process identification and predicition
    • Houston, USA, Sept.
    • Mehta, A., Ganesamoorthi, S., and Wojsznis, W., Feedforward Neural Networks for Process Identification and Predicition. Proc of ISA. Expo, Houston, USA, Sept., 2001.
    • (2001) Proc of ISA. Expo
    • Mehta, A.1    Ganesamoorthi, S.2    Wojsznis, W.3
  • 49
    • 0035270179 scopus 로고    scopus 로고
    • Modeling of an industrial fluid catalytic cracking unit using neural networks
    • Michalopoulos, J., Papadokonstadakis, S., Arampatzis, G., and Lygeros, A., Modeling of an Industrial Fluid Catalytic cracking Unit Using Neural Networks, Trans. IChemE, 2001, Vol.79, 137.
    • (2001) Trans. IChemE , vol.79 , pp. 137
    • Michalopoulos, J.1    Papadokonstadakis, S.2    Arampatzis, G.3    Lygeros, A.4
  • 50
    • 26944501261 scopus 로고    scopus 로고
    • Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process
    • Mjalli, F. S.; Al-Asheh, S. Neural-networks-based feedback linearization versus model predictive control of continuous alcoholic fermentation process, Chem. Eng. Technol. 2005, Vol. 28, 1191.
    • (2005) Chem. Eng. Technol. , vol.28 , pp. 1191
    • Mjalli, F.S.1    Al-Asheh, S.2
  • 51
    • 53449086599 scopus 로고    scopus 로고
    • Separation of lead ions from wastewater using electrodialysis: Comparing mathematical and neural network modeling
    • 1 November
    • Mohtada Sadrzadeh, Toraj Mohammadi, Javad Ivakpour, and Norollah Kasiri, Separation of lead ions from wastewater using electrodialysis: Comparing mathematical and neural network modeling, Chemical Engineering Journal, 1 November 2008, Vol. 144, No. 3, 431- 441.
    • (2008) Chemical Engineering Journal , vol.144 , Issue.3 , pp. 431-441
    • Mohtada, S.1    Toraj, M.2    Javad, I.3    Norollah, K.4
  • 53
    • 33747387269 scopus 로고    scopus 로고
    • Neural network based modeling and control in batch reactor, chemical engineering research and design
    • Mujtaba, I.M., Aziz, N., Hussain, M.A., Neural network based modeling and control in batch reactor, Chemical Engineering Research and Design, Trans IChemE, Part A, Vol. 84, No. A8, 2006, 635-644.
    • (2006) Trans IChemE, Part A , vol.84 , Issue.A8 , pp. 635-644
    • Mujtaba, I.M.1    Aziz, N.2    Hussain, M.A.3
  • 54
    • 0025399567 scopus 로고
    • Identification and control of dynamic systems using neural networks
    • Narendra, K. S. and Parthasarathy, P., Identification and control of dynamic systems using neural networks, IEEE Trans. on Neural Networks, 1990, Vol. 1, No. 1, 4-26.
    • (1990) IEEE Trans. on Neural Networks , vol.1 , Issue.1 , pp. 4-26
    • Narendra, K.S.1    Parthasarathy, P.2
  • 55
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamical systems containing neural networks
    • Mar
    • Narendra, K. S., and Parthasarathy, K., Gradient methods for the optimization of dynamical systems containing neural networks, IEEE Trans. Neural Networks, Mar. 1991, Vol. 2, No. 1, 252-262.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.1 , pp. 252-262
    • Narendra, K.S.1    Parthasarathy, K.2
  • 56
    • 0028737627 scopus 로고
    • Process control of nonlinear time variant processes via artificial neural network
    • Ohio University, Athens, Ohio, March
    • Nikravesh, M., Farell, A. E., Process Control of Nonlinear time Variant Processes Via Artificial Neural Network, 26TH IEEE Southeastern Symposium on System Theory, Ohio University, Athens, Ohio, March 1994.
    • (1994) 26TH IEEE Southeastern Symposium on System Theory
    • Nikravesh, M.1    Farell, A.E.2
  • 58
    • 0030193012 scopus 로고    scopus 로고
    • Model identification of nonlinear time variant processes via artificial neural network
    • Nikravesh, M., Farell, A. E., Stanford, T. G., Model identification of nonlinear time variant processes via artificial neural network, Computers & Chemical Engineering, 1996, Vol. 20, No. 11, , 1277-1290.
    • (1996) Computers & Chemical Engineering , vol.20 , Issue.11 , pp. 1277-1290
    • Nikravesh, M.1    Farell, A.E.2    Stanford, T.G.3
  • 59
    • 0041302142 scopus 로고    scopus 로고
    • Grouped neural network model-predictive control
    • Ou, J., and Rhinehart, R. R., Grouped neural network model-predictive control,Control Engineering Practice, 2003, Vol. 11, No. 7, 723-732.
    • (2003) Control Engineering Practice , vol.11 , Issue.7 , pp. 723-732
    • Ou, J.1    Rhinehart, R.R.2
  • 60
    • 63249119209 scopus 로고    scopus 로고
    • Neural network based model predictive control for a steel pickling process
    • April
    • Paisan Kittisupakorn, Piyanuch Thitiyasook, Hussain, M.A., Wachira Daosud, Neural network based model predictive control for a steel pickling process, Journal of Process Control, April 2009, Vol. 19, No. 4, 579-590.
    • (2009) Journal of Process Control , vol.19 , Issue.4 , pp. 579-590
    • Paisan, K.1    Piyanuch, T.2    Hussain, M.A.3    Daosud, W.4
  • 61
    • 0032965029 scopus 로고    scopus 로고
    • Neural control of an imperfectly mixed fed-batch bioreactor for recombinant β-galactosidase
    • April
    • Patnaik, P. R., Neural control of an imperfectly mixed fed-batch bioreactor for recombinant β-galactosidase, Biochemical Engineering Journal, April 1999, Vol. 3, No. 2, 113-120.
    • (1999) Biochemical Engineering Journal , vol.3 , Issue.2 , pp. 113-120
    • Patnaik, P.R.1
  • 62
    • 0006004958 scopus 로고
    • An introduction to artificial neural networks
    • (Edited by A. B.Bulsari), (Elsevier, Amsterdam), Chapter 1
    • Pham, D. T., An introduction to artificial neural networks, Neural Networks for Chemical Engineering (Edited by A. B.Bulsari), (Elsevier, Amsterdam), Chapter 1, 1995.
    • (1995) Neural Networks for Chemical Engineering
    • Pham, D.T.1
  • 64
  • 66
    • 0026403834 scopus 로고
    • Direct and indirect model based control using artificial neural networks
    • Psichogios D.C., and Ungar, L.H., Direct and indirect model based control using artificial neural networks. Ind. Engg Chem. Res., 1991, Vol. 30, 2564.
    • (1991) Ind. Engg Chem. Res. , vol.30 , pp. 2564
    • Psichogios, D.C.1    Ungar, L.H.2
  • 68
    • 0001315071 scopus 로고    scopus 로고
    • An overview of industrial model predictive control technology, in chemical process control: Assessment and new directions for research
    • Jeffrey C. Kantor, Carlos E. Garcia and Brice Carnahan Eds
    • Qin, S.J., and Badgwell, T.A., An Overview of Industrial Model Predictive Control Technology. In Chemical Process Control: Assessment and New Directions for Research, In AIChE Symposium Series 316, 93. Jeffrey C. Kantor, Carlos E. Garcia and Brice Carnahan Eds, 1997, 232-256.
    • (1997) AIChE Symposium Series , vol.316 , Issue.93 , pp. 232-256
    • Qin, S.J.1    Badgwell, T.A.2
  • 69
    • 0034551618 scopus 로고    scopus 로고
    • Neural networks for the identification and control of blast furnace hot metal quality
    • Radhakrishnan, V.R., Mohamed , A.R., Neural networks for the identification and control of blast furnace hot metal quality, Journal of process control, 2000, Vol. 10, 509-524.
    • (2000) Journal of Process Control , vol.10 , pp. 509-524
    • Radhakrishnan, V.R.1    Mohamed, A.R.2
  • 71
    • 77954557942 scopus 로고    scopus 로고
    • Identification of nonlinear models with feedforward neural network and digital recurrent network
    • Rankovic, V., and Nikolic, I., Identification of Nonlinear Models with Feedforward Neural Network and Digital Recurrent Network, FME Transactions, 2008, Vol. 36, No. 2, 87-92.
    • (2008) FME Transactions , vol.36 , Issue.2 , pp. 87-92
    • Rankovic, V.1    Nikolic, I.2
  • 72
    • 0037342417 scopus 로고    scopus 로고
    • Experimental studies on multiple-model predictive control for automated regulation of hemodynamic variables
    • Rao, R.R., Aufderheide, B., and Bequette, B.W., Experimental studies on multiple-model predictive control for automated regulation of hemodynamic variables, IEEE Trans. Biomed. Eng., 2003, Vol. 50, No. 3, 277-288.
    • (2003) IEEE Trans. Biomed. Eng. , vol.50 , Issue.3 , pp. 277-288
    • Rao, R.R.1    Aufderheide, B.2    Bequette, B.W.3
  • 73
    • 0000442460 scopus 로고
    • Pearson, nonlinear input/output modelling
    • August
    • Ronald K. Pearson, Nonlinear input/output modelling, Journal of Process Control, August 1995, Vol.5, No.4, 197-211.
    • (1995) Journal of Process Control , vol.5 , Issue.4 , pp. 197-211
    • Ronald, K.1
  • 74
    • 0030286180 scopus 로고    scopus 로고
    • Generalized predictive control based on neural networks
    • Rusnak, A., Fikar, M., Najim, K., and Meszaros, A., Generalized predictive control based on neural networks, Neural Process. Lett., 1996, Vol. 4, 107-112.
    • (1996) Neural Process. Lett. , vol.4 , pp. 107-112
    • Rusnak, A.1    Fikar, M.2    Najim, K.3    Meszaros, A.4
  • 75
    • 77954557514 scopus 로고    scopus 로고
    • Generalized predictive control and neural generalized predictive control
    • Sadhana Chidrawar and Balasaheb Patre, Generalized Predictive Control and Neural Generalized Predictive Control, Leonardo Journal of Sciences (LJS), 2008, Vol. 7, No.13, 133-152, 2008.
    • (2008) Leonardo Journal of Sciences (LJS) , vol.7 , Issue.13 , pp. 133-152
    • Chidrawar, S.1    Patre, B.2
  • 77
    • 0030737837 scopus 로고    scopus 로고
    • A dynamic neural approach to nonlinear process modeling
    • Shaw, A. M., Doyle III, F. J., and Schwaber, J. S., A Dynamic neural approach to nonlinear process modeling, Comp Chem Eng, 1997, Vol. 21, No.4, 371-385.
    • (1997) Comp Chem Eng , vol.21 , Issue.4 , pp. 371-385
    • Shaw, A.M.1    Doyle III, F.J.2    Schwaber, J.S.3
  • 78
    • 0142043495 scopus 로고    scopus 로고
    • Process control of a laboratory combustor using artificial neural networks
    • 15 November
    • Slanvetpan, T., Barat, R. B., Stevens, J. G., Process control of a laboratory combustor using artificial neural networks, Computers & Chemical Engineering, 15 November 2003, Vol. 27, No. 11, 1605-1616.
    • (2003) Computers & Chemical Engineering , vol.27 , Issue.11 , pp. 1605-1616
    • Slanvetpan, T.1    Barat, R.B.2    Stevens, J.G.3
  • 79
    • 0029291914 scopus 로고
    • A very simple structure for neural network control of distillation
    • April
    • Soundar Ramchandran, Russell Rhinehart, R., A very simple structure for neural network control of distillation, Journal of Process Control, April 1995, Vol. 5, No. 2, 115-128.
    • (1995) Journal of Process Control , vol.5 , Issue.2 , pp. 115-128
    • Ramchandran, S.1    Rhinehart, R.R.2
  • 81
    • 0029713462 scopus 로고    scopus 로고
    • Dynamic neural networks in non-linear predictive control (an industrial application)
    • Turner P., Montague G., Morris J., Dynamic neural networks in non-linear predictive control (an industrial application), Computers & Chemical Engineering, 1996, Vol. 20, Supplement 2, S937-S942.
    • (1996) Computers & Chemical Engineering , vol.20 , Issue.SUPPL. 2
    • Turner, P.1    Montague, G.2    Morris, J.3
  • 83
    • 0024905756 scopus 로고
    • A neural network methodoloy for process fault diagnosis
    • Venkatasubramanian, V. and Chan, K., A neural network methodoloy for process fault diagnosis, AIChEJ, 1989, Vol. 35, 1993.
    • (1989) AIChEJ , vol.35 , pp. 1993
    • Venkatasubramanian, V.1    Chan, K.2
  • 84
    • 0027389403 scopus 로고
    • The estimation of kinematic viscosity of petroleum crude oils and fractions with a neural net
    • Walt, T. J. van der, Deventer, J. S. J. Van and Bernard, E., The estimation of kinematic viscosity of petroleum crude oils and fractions with a neural net, Chem. Engg.J, 1993, Vol. 51, 151-158.
    • (1993) Chem. Engg. J , vol.51 , pp. 151-158
    • Walt Der Van, T.J.1    Van Deventer, J.S.J.2    Bernard, E.3
  • 85
    • 0032316330 scopus 로고    scopus 로고
    • Potential function based neural networks and its application to the classification of complex chemical patterns
    • Weixiang, Z., Dezhao, C., and Shangxu, H., Potential function based neural networks and its application to the classification of complex chemical patterns, Computer and Chemistry, 1998, Vol. 25, No. 2, 385-391.
    • (1998) Computer and Chemistry , vol.25 , Issue.2 , pp. 385-391
    • Weixiang, Z.1    Dezhao, C.2    Shangxu, H.3
  • 87
    • 0030147710 scopus 로고    scopus 로고
    • Modeling of a fixed-bed reactor using the K-L expansion and neural networks
    • May
    • Xing-Gui Zhou, Liang-Hong Liu, Yin-Chun Dai, Wei-Kang Yuan, Hudson, J. L., Modeling of a fixed-bed reactor using the K-L expansion and neural networks Chemical Engineering Science, May 1996, Vol. 51, No. 10, 2179-2188.
    • (1996) Chemical Engineering Science , vol.51 , Issue.10 , pp. 2179-2188
    • Zhou, X.-G.1    Liu, L.-H.2    Dai, Y.-C.3    Yuan, W.-K.4    Hudson, J.L.5
  • 88
    • 0001344952 scopus 로고
    • A neural network for breakthrough prediction in packed bed adsorption
    • Yang, M., Hubble, J., Fang, M., Lockett, A. D., and Rathbone, R. R., A neural network for breakthrough prediction in packed bed adsorption, Biotechnol. Techn., 1993, Vol. 7, 155-158.
    • (1993) Biotechnol. Techn. , vol.7 , pp. 155-158
    • Yang, M.1    Hubble, J.2    Fang, M.3    Lockett, A.D.4    Rathbone, R.R.5
  • 90
    • 77954549371 scopus 로고    scopus 로고
    • Development of neural network models for a crude oil distillation column
    • June
    • Yusof, K. M., Karray, F., and Douglas, P. L., Development of Neural Network Models for a Crude Oil Distillation Column, Jurnal Teknologi Siri F, June 2003, Vol. 38, 53-64.
    • (2003) Jurnal Teknologi Siri F , vol.38 , pp. 53-64
    • Yusof, K.M.1    Karray, F.2    Douglas, P.L.3
  • 91
    • 48949116212 scopus 로고    scopus 로고
    • Dynamic neural-network-based model predictive control of an industrial baker's yeast drying process
    • Yuzgec, U., Becerikli, Y., Turker, M., Dynamic neural-network-based model predictive control of an industrial baker's yeast drying process, IEEE Transactions on Neural Networks, 2008, Vol. 19, No.7, 1231-1242.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.7 , pp. 1231-1242
    • Yuzgec, U.1    Becerikli, Y.2    Turker, M.3
  • 92
    • 0031256924 scopus 로고    scopus 로고
    • Identification and predictive control of a melter unit used in the sugar industry
    • Zamarreno, J. M., and Vega, P., 1997, Identification and predictive control of a melter unit used in the sugar industry, Artificial Intelligence in Engineering, 1997, Vol.11, No.4, 365-373.
    • (1997) Artificial Intelligence in Engineering , vol.11 , Issue.4 , pp. 365-373
    • Zamarreno, J.M.1    Vega, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.