메뉴 건너뛰기




Volumn 27, Issue 11, 2003, Pages 1605-1616

Process control of a laboratory combustor using artificial neural networks

Author keywords

Combustion system; Feed forward neural networks; Model based control; Process control; Time delay compensation

Indexed keywords

BACKPROPAGATION; COMBUSTORS; GAS EMISSIONS; NEURAL NETWORKS; THREE TERM CONTROL SYSTEMS;

EID: 0142043495     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0098-1354(03)00100-5     Document Type: Article
Times cited : (16)

References (30)
  • 1
    • 0027626502 scopus 로고
    • An imaging neural network combustion control system for utility boiler applications
    • Allen, M. G., Butler, C. T., Johnson, S. A., Lo, E. Y., & Russo, F. (1993). An imaging neural network combustion control system for utility boiler applications. Combustion and Flame 94, 205-214.
    • (1993) Combustion and Flame , vol.94 , pp. 205-214
    • Allen, M.G.1    Butler, C.T.2    Johnson, S.A.3    Lo, E.Y.4    Russo, F.5
  • 2
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modeling and control of chemical process systems
    • Bhat, N., & McAvoy, T. J. (1990). Use of neural nets for dynamic modeling and control of chemical process systems. Computers and Chemical Engineering 14 (4/5), 573-583.
    • (1990) Computers and Chemical Engineering , vol.14 , Issue.4-5 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 5
    • 0030081211 scopus 로고    scopus 로고
    • Neural network architecture for process control based on the RTRL algorithm
    • Chovan, T., Catfolis, T., & Meert, K. (1996). Neural network architecture for process control based on the RTRL algorithm. AIChE Journal 42 (2), 493-502.
    • (1996) AIChE Journal , vol.42 , Issue.2 , pp. 493-502
    • Chovan, T.1    Catfolis, T.2    Meert, K.3
  • 7
  • 8
    • 0026849116 scopus 로고
    • Study of the control-relevant properties of backpropagation neural network models of nonlinear dynamical systems
    • Hernández, E., & Arkun, Y. (1992). Study of the control-relevant properties of backpropagation neural network models of nonlinear dynamical systems. Computers and Chemical Engineering 16 (4), 227-240.
    • (1992) Computers and Chemical Engineering , vol.16 , Issue.4 , pp. 227-240
    • Hernández, E.1    Arkun, Y.2
  • 9
    • 0024880831 scopus 로고
    • Multilayer feedforward neural networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward neural networks are universal approximators. Neural Network 2.
    • (1989) Neural Network , pp. 2
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 10
    • 0026849113 scopus 로고
    • Process control via artificial neural networks and reinforcement learning
    • Hoskins, J. C., & Himmelblau, D. M. (1992). Process control via artificial neural networks and reinforcement learning. Computers and Chemical Engineering 16 (4), 241-251.
    • (1992) Computers and Chemical Engineering , vol.16 , Issue.4 , pp. 241-251
    • Hoskins, J.C.1    Himmelblau, D.M.2
  • 11
    • 0033544445 scopus 로고    scopus 로고
    • Adaptive neural network structures for non-linear process estimation and control
    • Kavchak, M., & Budman, H. (1999). Adaptive neural network structures for non-linear process estimation and control. Computers and Chemical Engineering 23, 1209-1228.
    • (1999) Computers and Chemical Engineering , vol.23 , pp. 1209-1228
    • Kavchak, M.1    Budman, H.2
  • 14
    • 0034661261 scopus 로고    scopus 로고
    • Application of feedforward artificial neural networks to improve process control of PID-based control algorithms
    • Martins, F. G., & Coelho, M. A. N. (2000). Application of feedforward artificial neural networks to improve process control of PID-based control algorithms. Computers and Chemical Engineering 24, 853-858.
    • (2000) Computers and Chemical Engineering , vol.24 , pp. 853-858
    • Martins, F.G.1    Coelho, M.A.N.2
  • 16
    • 0142048212 scopus 로고    scopus 로고
    • Application of intelligent controls in EPA's combustion technology research and development
    • Research Triangle Park, NC: Nation Risk Management Research Laboratory
    • Miller, C. A., & Lemieux, P. M. (1998). Application of intelligent controls in EPA's combustion technology research and development. In US EPA. Research Triangle Park, NC: Nation Risk Management Research Laboratory.
    • (1998) US EPA
    • Miller, C.A.1    Lemieux, P.M.2
  • 17
    • 0034287621 scopus 로고    scopus 로고
    • Neural network based approach for optimization of industrial chemical processes
    • Nascimento, C. A. O., Giudici, R., & Guardani, R. (2000). Neural network based approach for optimization of industrial chemical processes. Computers and Chemical Engineering 24, 2303-2314.
    • (2000) Computers and Chemical Engineering , vol.24 , pp. 2303-2314
    • Nascimento, C.A.O.1    Giudici, R.2    Guardani, R.3
  • 18
    • 0034112503 scopus 로고    scopus 로고
    • Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC)
    • Nikravesh, M., Farell, A. E., & Stanford, T. G. (2000). Control of nonisothermal CSTR with time varying parameters via dynamic neural network control (DNNC). Chemical Engineering Journal 76, 1-16.
    • (2000) Chemical Engineering Journal , vol.76 , pp. 1-16
    • Nikravesh, M.1    Farell, A.E.2    Stanford, T.G.3
  • 19
    • 85072452733 scopus 로고    scopus 로고
    • Closed-loop control of an HCCI engine
    • Olsson, Jan-Ola, Per Tunestål, & Bengt Johansson (2001). Closed-Loop Control of an HCCI Engine, SAE, vol. 1(1031), 111-120.
    • (2001) SAE, Vol. 1 , vol.1 , Issue.1031 , pp. 111-120
    • Olsson, J.-O.1    Tunestål, P.2    Johansson, B.3
  • 27
    • 0032172092 scopus 로고    scopus 로고
    • Back-propagation neural network adaptive control of a continuous wastewater treatment process
    • Syu, M.-J., & Chen, B.-C. (1998). Back-propagation neural network adaptive control of a continuous wastewater treatment process. Industrial and Engineering Chemistry Research 37, 3625-3630.
    • (1998) Industrial and Engineering Chemistry Research , vol.37 , pp. 3625-3630
    • Syu, M.-J.1    Chen, B.-C.2
  • 29
    • 0032100131 scopus 로고    scopus 로고
    • Hydroxylation of phenol to dihydroxybenzenes: Development of artificial neural-network-based process identification and model predictive control strategies for a pilot plant scale reactor
    • Tendulkar, S. B., Tambe, S. S., Chandra, I., Rao, P. V., Naik, R. V., & Kulkarni, B. D. (1998). Hydroxylation of phenol to dihydroxybenzenes: development of artificial neural-network-based process identification and model predictive control strategies for a pilot plant scale reactor. Industrial and Engineering Chemistry Research 37, 2081-2085.
    • (1998) Industrial and Engineering Chemistry Research , vol.37 , pp. 2081-2085
    • Tendulkar, S.B.1    Tambe, S.S.2    Chandra, I.3    Rao, P.V.4    Naik, R.V.5    Kulkarni, B.D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.