-
1
-
-
0028116676
-
Some discrete-time SI, SIR, and SIS epidemic models
-
DOI 10.1016/0025-5564(94)90025-6
-
L. J. S. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Math. Biosci. 124 (1994) 83-105. (Pubitemid 24348343)
-
(1994)
Mathematical Biosciences
, vol.124
, Issue.1
, pp. 83-105
-
-
Allen, L.J.S.1
-
2
-
-
50249100249
-
On the use of the geometric approach to global stability for three dimensional ODE system: A bilinear case
-
B. Buonomo and D. Lacitignola, On the use of the geometric approach to global stability for three dimensional ODE system: A bilinear case, J. Math. Anal. Appl. 348 (2008) 255-266.
-
(2008)
J. Math. Anal. Appl.
, vol.348
, pp. 255-266
-
-
Buonomo, B.1
Lacitignola, D.2
-
4
-
-
0030318519
-
Analysis of an SEIRS epidemic model with two delays
-
K. L. Cooke and P. Van Den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math. Biol. 35 (1996) 240-260.
-
(1996)
J. Math. Biol.
, vol.35
, pp. 240-260
-
-
Cooke, K.L.1
Van Den Driessche, P.2
-
6
-
-
14844325705
-
Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system
-
DOI 10.1142/S0218127404011946, PII S0218127404011946, 01194, Reportnr 1412
-
G. H. Erjaee and F.M. Dannan, Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system, Int. J. Bifur. Chaos 14 (2004) 4301-4308. (Pubitemid 40339588)
-
(2004)
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
, vol.14
, Issue.12
, pp. 4301-4308
-
-
Erjaee, G.H.1
Dannan, F.M.2
-
7
-
-
33750163024
-
Discrete-time SIS epidemic model in a seasonal environment
-
DOI 10.1137/050638345
-
J. E. Franke and A.-A. Yakubu, Discrete-time SIS epidemic model in a seasonal environment, Soc. Appl. Math. 66 (2006) 1563-1587. (Pubitemid 44599932)
-
(2006)
SIAM Journal on Applied Mathematics
, vol.66
, Issue.5
, pp. 1563-1587
-
-
Franke, J.E.1
Yakubu, A.-A.2
-
8
-
-
0017228276
-
Qualitative analyses of communicable disease models
-
H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci. 7 (1976) 335-356.
-
(1976)
Math. Biosci.
, vol.7
, pp. 335-356
-
-
Hethcote, H.W.1
-
9
-
-
34848877440
-
A discrete time version for models of population dynamics in the presence of an infection
-
DOI 10.1016/j.cam.2006.10.065, PII S0377042706006637
-
G. Izzo and A. Vecchio, A discrete time version for models of population dynamics in the presence of an infection, J. Comput. Appl. Math. 210 (2007) 210-221. (Pubitemid 47496202)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.210
, Issue.1-2
, pp. 210-221
-
-
Izzo, G.1
Vecchio, A.2
-
10
-
-
68349094144
-
A general discrete time model of population dynamics in the presence of an infection
-
Art. ID 143019
-
G. Izzo, Y. Muroya and A. Vecchio, A general discrete time model of population dynamics in the presence of an infection, Discrete Dyn. Nat. Soc. (2009) 15. Art. ID 143019.
-
(2009)
Discrete Dyn. Nat. Soc.
, vol.15
-
-
Izzo, G.1
Muroya, Y.2
Vecchio, A.3
-
11
-
-
79955523456
-
Difference equations from discretization of a continuous epidemic model with immigration of infectives
-
S. Jang and S.N. Elaydi, Difference equations from discretization of a continuous epidemic model with immigration of infectives, MTBI Cornell University Technical Report 92 (2004).
-
(2004)
MTBI Cornell University Technical Report
, vol.92
-
-
Jang, S.1
Elaydi, S.N.2
-
12
-
-
31244431623
-
Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models
-
A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models, Appl. Math. Lett. 15 (2002) 955-960.
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 955-960
-
-
Korobeinikov, A.1
Wake, G.C.2
-
13
-
-
5444221485
-
Global analysis of SIS epidemic models with variable total population size
-
J. Li and Z. Ma, Global analysis of SIS epidemic models with variable total population size, Math. Comput. Model. 39 (2004) 1231-1242.
-
(2004)
Math. Comput. Model.
, vol.39
, pp. 1231-1242
-
-
Li, J.1
Ma, Z.2
-
14
-
-
18844377907
-
A discrete epidemic model with stage structure
-
DOI 10.1016/j.chaos.2005.01.063, PII S0960077905001542
-
X. Li and W. Wang, A discrete epidemic model with stage structure, Chaos Solitons Fract. 20 (2005) 947-958. (Pubitemid 40682526)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.3
, pp. 947-958
-
-
Li, X.1
Wang, W.2
-
15
-
-
10644240707
-
Global stability of an SIR epidemic model with time delay
-
W. Ma and M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004) 1141-1145.
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 1141-1145
-
-
Ma, W.1
Song, M.2
Takeuchi, Y.3
-
16
-
-
0033338885
-
Discretizations of nonlinear differential equations using explicit nonstandard methods
-
DOI 10.1016/S0377-0427(99)00233-2
-
R. E. Mickens, Discretizations of nonlinear differential equations using explicit nonstandard methods, J. Comput. Appl. Math. 110 (1999) 181-185. (Pubitemid 30518379)
-
(1999)
Journal of Computational and Applied Mathematics
, vol.110
, Issue.1
, pp. 181-185
-
-
Mickens, R.E.1
-
17
-
-
34248181918
-
Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition
-
DOI 10.1002/num.20198
-
R. E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numer. Methods Partial Differential Equations 23 (2007) 672-691. (Pubitemid 46721631)
-
(2007)
Numerical Methods for Partial Differential Equations
, vol.23
, Issue.3
, pp. 672-691
-
-
Mickens, R.E.1
-
18
-
-
34047197289
-
Preservation of local dynamics when applying central difference methods: Application to SIR model
-
L.-I. W. Roeger and R. W. Barnard, Preservation of local dynamics when applying central difference methods: Application to SIR model, J. Differential Equations Appl. 13 (2007) 333-340.
-
(2007)
J. Differential Equations Appl.
, vol.13
, pp. 333-340
-
-
Roeger, L.-I.W.1
Barnard, R.W.2
-
19
-
-
12944258608
-
Nonstandard discrete approximations preserving stability properties of continuous mathematical models
-
DOI 10.1016/j.mcm.2004.02.028, PII S0895717704803145
-
F. J. Solis and B. Chen-Charpentier, Nonstandard discrete approximations preserving stability properties of continuous mathematical models, Math. Comput. Model. 40 (2004) 481-490. (Pubitemid 40172105)
-
(2004)
Mathematical and Computer Modelling
, vol.40
, Issue.5-6
, pp. 481-490
-
-
Solis, F.J.1
Chen-Charpentier, B.2
-
21
-
-
33846576177
-
Permanence of a delayed SIR epidemic model with density dependent birth rate
-
DOI 10.1016/j.cam.2005.12.039, PII S0377042706000926, Dynamical Systems Theory and Its Applications to Biology and Environmental Sciences
-
M. Song and W. Ma and Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Compt. Appl. Math. 201 (2007) 389-394. (Pubitemid 46176492)
-
(2007)
Journal of Computational and Applied Mathematics
, vol.201
, Issue.2
, pp. 389-394
-
-
Song, M.1
Ma, W.2
Takeuchi, Y.3
-
22
-
-
31244431921
-
Global behavior of an SEIRS epidemic model with time delays
-
W. Wang, Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett. 15 (2002) 423-428.
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 423-428
-
-
Wang, W.1
-
23
-
-
41849145363
-
Global stability of a delayed SIRS model with temporary immunity
-
DOI 10.1016/j.chaos.2006.11.010, PII S0960077906010459
-
L. Wen and X. Yang, Global stability of a delayed SIRS model with temporary immunity, Chaos Solitons Fractals 38 (2008) 221-226. (Pubitemid 351503988)
-
(2008)
Chaos, Solitons and Fractals
, vol.38
, Issue.1
, pp. 221-226
-
-
Wen, L.1
Yang, X.2
-
24
-
-
40949093970
-
Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence
-
DOI 10.1016/j.chaos.2006.10.041, PII S0960077906010071
-
T. Zhang and Z. Teng, Global asymptotic stability of a delayed SEIRS epidemic model with saturation incidence, Chaos Solitons Fractals 37 (2008) 1456-1468. (Pubitemid 351418160)
-
(2008)
Chaos, Solitons and Fractals
, vol.37
, Issue.5
, pp. 1456-1468
-
-
Zhang, T.1
Teng, Z.2
|