메뉴 건너뛰기




Volumn 201, Issue 2, 2007, Pages 389-394

Permanence of a delayed SIR epidemic model with density dependent birth rate

Author keywords

Permanence; SIR epidemic model; Time delay

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; EPIDEMIOLOGY; MATHEMATICAL MODELS; SOCIAL SCIENCES;

EID: 33846576177     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2005.12.039     Document Type: Article
Times cited : (37)

References (15)
  • 1
    • 0024197363 scopus 로고
    • Global stability results for a generalized Lotka-Volterra system with distributed delays: applications to predator-prey and epidemic systems
    • Beretta E., Capasso V., and Rinaldi F. Global stability results for a generalized Lotka-Volterra system with distributed delays: applications to predator-prey and epidemic systems. J. Math. Biol. 26 (1988) 661-668
    • (1988) J. Math. Biol. , vol.26 , pp. 661-668
    • Beretta, E.1    Capasso, V.2    Rinaldi, F.3
  • 2
    • 0031167217 scopus 로고    scopus 로고
    • Convergence results in SIR epidemic model with varying population sizes
    • Beretta E., and Takeuchi Y. Convergence results in SIR epidemic model with varying population sizes. Nonlinear Anal. 28 (1997) 1909-1921
    • (1997) Nonlinear Anal. , vol.28 , pp. 1909-1921
    • Beretta, E.1    Takeuchi, Y.2
  • 4
    • 0001723867 scopus 로고
    • Uniform persistence in functional differential equations
    • Freedman H.I., and Ruan S. Uniform persistence in functional differential equations. J. Differential Equations 115 (1995) 173-192
    • (1995) J. Differential Equations , vol.115 , pp. 173-192
    • Freedman, H.I.1    Ruan, S.2
  • 6
    • 0000802631 scopus 로고
    • Persistence in infinite-dimensional systems
    • Hale J.K., and Waltman P. Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20 (1989) 388-395
    • (1989) SIAM J. Math. Anal. , vol.20 , pp. 388-395
    • Hale, J.K.1    Waltman, P.2
  • 7
    • 0017228276 scopus 로고
    • Qualitative analyses of communicable disease models
    • Hethcote H.W. Qualitative analyses of communicable disease models. Math. Biosci. 7 (1976) 335-356
    • (1976) Math. Biosci. , vol.7 , pp. 335-356
    • Hethcote, H.W.1
  • 10
    • 0036222772 scopus 로고    scopus 로고
    • Global dynamics of an SEIR epidemic model with vertical transmission
    • Li M.Y., Smith H.L., and Wang L. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. Math. 62 (2001) 58-69
    • (2001) SIAM J. Appl. Math. , vol.62 , pp. 58-69
    • Li, M.Y.1    Smith, H.L.2    Wang, L.3
  • 11
    • 10644240707 scopus 로고    scopus 로고
    • Global stability of an SIR epidemic model with time delay
    • Ma W., Song M., and Takeuchi Y. Global stability of an SIR epidemic model with time delay. Appl. Math. Lett. 17 (2004) 1141-1145
    • (2004) Appl. Math. Lett. , vol.17 , pp. 1141-1145
    • Ma, W.1    Song, M.2    Takeuchi, Y.3
  • 12
    • 0036986139 scopus 로고    scopus 로고
    • Permanence of an SIR epidemic model with distributed time delays
    • Ma W., Takeuchi Y., Hara T., and Beretta E. Permanence of an SIR epidemic model with distributed time delays. Tohoku Math. J. 54 (2002) 581-591
    • (2002) Tohoku Math. J. , vol.54 , pp. 581-591
    • Ma, W.1    Takeuchi, Y.2    Hara, T.3    Beretta, E.4
  • 13
    • 33845715494 scopus 로고    scopus 로고
    • Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay
    • Song M., and Ma W. Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay. Dynamic of Continuous, Discrete and Impulsive Systems 13 (2006) 199-208
    • (2006) Dynamic of Continuous, Discrete and Impulsive Systems , vol.13 , pp. 199-208
    • Song, M.1    Ma, W.2
  • 15
    • 31244431921 scopus 로고    scopus 로고
    • Global behavior of an SEIRS epidemic model with time delay
    • Wang W. Global behavior of an SEIRS epidemic model with time delay. Appl. Math. Lett. 15 (2002) 423-428
    • (2002) Appl. Math. Lett. , vol.15 , pp. 423-428
    • Wang, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.