메뉴 건너뛰기




Volumn 19, Issue 3, 2003, Pages 363-379

Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation

Author keywords

Convergence; Nagumo model; Nonstandard finite difference schemes; Positivity; Truncation errors

Indexed keywords


EID: 0037406570     PISSN: 0749159X     EISSN: None     Source Type: Journal    
DOI: 10.1002/num.10048     Document Type: Article
Times cited : (40)

References (11)
  • 1
    • 0003541341 scopus 로고
    • Reaction‐diffusion equations and their applications to biology
    • 1 N. F. Britton, Reaction‐diffusion equations and their applications to biology, Academic Press, New York, 1986.
    • (1986)
    • Britton, N.F.1
  • 2
    • 0033114412 scopus 로고    scopus 로고
    • A second‐order scheme for the “Brusselator” reaction‐diffusion system
    • 2 E. H. Twizell, A. B. Gumel, and Q. Cao, A second‐order scheme for the “Brusselator” reaction‐diffusion system, Math Chem 26 (1999), 297–316.
    • (1999) Math Chem , vol.26 , pp. 297-316
    • Twizell, E.H.1    Gumel, A.B.2    Cao, Q.3
  • 3
    • 85120594648 scopus 로고    scopus 로고
    • A second‐order, chaos‐free, numerical method for the solution of a reaction‐diffusion equation in two space dimensions
    • 3 A. B. Gumel and E. H. Twizell, A second‐order, chaos‐free, numerical method for the solution of a reaction‐diffusion equation in two space dimensions. Int J Non‐linear Sci Numer Simul, to appear.
    • Int J Non‐linear Sci Numer Simul
    • Gumel, A.B.1    Twizell, E.H.2
  • 4
    • 0000739387 scopus 로고    scopus 로고
    • Nonstandard finite difference schemes for reaction‐diffusion equations
    • 4 R. E. Mickens, Nonstandard finite difference schemes for reaction‐diffusion equations. Numer Methods Partial Differential Eq 15 (1999), 201–224.
    • (1999) Numer Methods Partial Differential Eq , vol.15 , pp. 201-224
    • Mickens, R.E.1
  • 5
    • 84985386829 scopus 로고
    • A numerical study of chaos in a reaction‐diffusion equation
    • 5 A. R. Mitchell and J. C. Brunch, A numerical study of chaos in a reaction‐diffusion equation, Numer Methods Partial Differential Eq 1 (1985), 13–23.
    • (1985) Numer Methods Partial Differential Eq , vol.1 , pp. 13-23
    • Mitchell, A.R.1    Brunch, J.C.2
  • 6
    • 0003491524 scopus 로고
    • Numerical methods for ordinary differential systems, the initial value problem
    • 6 J. D. Lambert, Numerical methods for ordinary differential systems, the initial value problem, John Wiley, New York, 1991.
    • (1991)
    • Lambert, J.D.1
  • 7
    • 0003644445 scopus 로고
    • Nonstandard finite‐difference models of differential equations
    • 7 R. E. Mickens, Nonstandard finite‐difference models of differential equations, World Scientific, Singapore, 1994.
    • (1994)
    • Mickens, R.E.1
  • 8
    • 0003763818 scopus 로고    scopus 로고
    • Applications of nonstandard finite‐difference schemes
    • 8 R. E. Mickens, Applications of nonstandard finite‐difference schemes, World Scientific, River Edge, NJ, 2000.
    • (2000)
    • Mickens, R.E.1
  • 9
    • 0003568098 scopus 로고    scopus 로고
    • Chaos, an introduction to dynamical systems
    • 9 K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos, an introduction to dynamical systems, Springer, New York, 1997.
    • (1997)
    • Alligood, K.T.1    Sauer, T.D.2    Yorke, J.A.3
  • 10
    • 0003399993 scopus 로고
    • Nonlinear differential equations and dynamical systems
    • 10 F. Verhulst, Nonlinear differential equations and dynamical systems, Springer‐Verlag, Berlin, 1990.
    • (1990)
    • Verhulst, F.1
  • 11
    • 0003509599 scopus 로고
    • An introduction to chaotic dynamical systems
    • 11 R. L. Devaney, An introduction to chaotic dynamical systems, 2nd edition, Addison‐Wesley Publishing Company, Reading, MA, 1989.
    • (1989)
    • Devaney, R.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.