메뉴 건너뛰기




Volumn 33, Issue 1, 2010, Pages 46-50

SAM: A comprehensive application for Spatial Analysis in Macroecology

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHICAL METHOD; INTERNET; MACROECOLOGY; NUMERICAL MODEL; REGRESSION ANALYSIS; SOFTWARE; SPATIAL ANALYSIS;

EID: 77953931276     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/j.1600-0587.2009.06299.x     Document Type: Article
Times cited : (1049)

References (26)
  • 1
    • 0002137413 scopus 로고    scopus 로고
    • The Moran scatterplot as an ESDA tool to assess local instability in spatial association
    • Fischer, M. et al. (eds), Taylor and Francis
    • Anselin, L. 1996. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. - In: Fischer, M. et al. (eds), Spatial analytical perspectives in GIS. Taylor and Francis, pp. 111-125.
    • (1996) Spatial analytical perspectives in GIS , pp. 111-125
    • Anselin, L.1
  • 2
    • 67649921143 scopus 로고    scopus 로고
    • Comments on Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
    • Betts, G. M. et al. 2009. Comments on "Methods to account for spatial autocorrelation in the analysis of species distributional data: a review". - Ecography 32: 374-378.
    • (2009) Ecography , vol.32 , pp. 374-378
    • Betts, G.M.1
  • 3
    • 6944231025 scopus 로고    scopus 로고
    • Macroecological explanations for differences in species richness gradients: a canonical analysis of South American birds
    • Bini, L. M. et al. 2004. Macroecological explanations for differences in species richness gradients: a canonical analysis of South American birds. -J. Biogeogr. 31: 1819-1827.
    • (2004) J. Biogeogr. , vol.31 , pp. 1819-1827
    • Bini, L.M.1
  • 4
    • 62249098547 scopus 로고    scopus 로고
    • Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression
    • Bini, L. M. et al. 2009. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. - Ecography 32: 193-204.
    • (2009) Ecography , vol.32 , pp. 193-204
    • Bini, L.M.1
  • 5
    • 4444374541 scopus 로고    scopus 로고
    • Dissecting the spatial structure of ecological data at multiple spatial scales
    • Borcard, D. et al. 2004. Dissecting the spatial structure of ecological data at multiple spatial scales. - Ecology 85: 1826-1832.
    • (2004) Ecology , vol.85 , pp. 1826-1832
    • Borcard, D.1
  • 7
    • 35348931757 scopus 로고    scopus 로고
    • Non-stationarity, diversity gradients and the metabolic theory of ecology
    • Cassemiro, F. A. S. et al. 2007. Non-stationarity, diversity gradients and the metabolic theory of ecology. - Global Ecol. Biogeogr. 16: 820-822.
    • (2007) Global Ecol. Biogeogr. , vol.16 , pp. 820-822
    • Cassemiro, F.A.S.1
  • 8
    • 73649134010 scopus 로고    scopus 로고
    • What were we thinking?
    • Cliff, A. D. and Ord, J. K. 2009. What were we thinking? - Geogr. Anal. 41: 351-363.
    • (2009) Geogr. Anal. , vol.41 , pp. 351-363
    • Cliff, A.D.1    Ord, J.K.2
  • 9
    • 14844358016 scopus 로고    scopus 로고
    • Modelling geographical patterns in species richness using eigenvector-based spatial filters
    • Diniz-Filho, J. A. F. and Bini, L. M. 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. - Global Ecol. Biogeogr. 14: 177-185.
    • (2005) Global Ecol. Biogeogr. , vol.14 , pp. 177-185
    • Diniz-Filho, J.A.F.1    Bini, L.M.2
  • 10
    • 45249111607 scopus 로고    scopus 로고
    • Model selection and information theory in geographical ecology
    • Diniz-Filho, J. A. F. et al. 2008. Model selection and information theory in geographical ecology. - Global Ecol. Biogeogr. 17: 479-488.
    • (2008) Global Ecol. Biogeogr. , vol.17 , pp. 479-488
    • Diniz-Filho, J.A.F.1
  • 11
    • 35848930781 scopus 로고    scopus 로고
    • Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
    • Dormann, C. F. et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. - Ecography 30: 609-628.
    • (2007) Ecography , vol.30 , pp. 609-628
    • Dormann, C.F.1
  • 12
    • 0027286249 scopus 로고
    • Modifying the t-test for assessing the correlation between two spatial processes
    • Dutilleul, P. 1993. Modifying the t-test for assessing the correlation between two spatial processes. - Biometrics 49: 305-314.
    • (1993) Biometrics , vol.49 , pp. 305-314
    • Dutilleul, P.1
  • 13
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. - Ecography 29: 129-151.
    • (2006) Ecography , vol.29 , pp. 129-151
    • Elith, J.1
  • 15
    • 33845354872 scopus 로고    scopus 로고
    • Spatial modeling in ecology: the flexibility of eigenfunction spatial analysis
    • Griffith, D. A. and Peres-Neto, P. R. 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analysis. - Ecology 87: 2603-2613.
    • (2006) Ecology , vol.87 , pp. 2603-2613
    • Griffith, D.A.1    Peres-Neto, P.R.2
  • 16
    • 10744225171 scopus 로고    scopus 로고
    • Energy, water, and broad-scale geographic patterns of species richness
    • Hawkins, B. A. et al. 2003. Energy, water, and broad-scale geographic patterns of species richness. - Ecology 84: 3105-3117.
    • (2003) Ecology , vol.84 , pp. 3105-3117
    • Hawkins, B.A.1
  • 18
    • 0027881344 scopus 로고
    • Spatial autocorrelation: trouble or new paradigm?
    • Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? - Ecology 74: 1659-1673.
    • (1993) Ecology , vol.74 , pp. 1659-1673
    • Legendre P1
  • 20
    • 33745589229 scopus 로고    scopus 로고
    • Towards an integrated computational tool for spatial analysis in macroecology and biogeography
    • Rangel, T. F. L. V. B. et al. 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. - Global Ecol. Biogeogr. 15: 321-327.
    • (2006) Global Ecol. Biogeogr. , vol.15 , pp. 321-327
    • Rangel, T.F.L.V.B.1
  • 21
    • 0033844858 scopus 로고    scopus 로고
    • The Bearing correlogram: a new method of analyzing directional spatial autocorrelation
    • Rosenberg, M. S. 2000. The Bearing correlogram: a new method of analyzing directional spatial autocorrelation. - Geogr. Anal. 32: 267-278.
    • (2000) Geogr. Anal. , vol.32 , pp. 267-278
    • Rosenberg, M.S.1
  • 23
    • 33646543702 scopus 로고    scopus 로고
    • Consequences of spatial autocorrelation for niche-based models
    • Segurado, P. et al. 2006. Consequences of spatial autocorrelation for niche-based models. - J. Anim. Ecol. 43: 433-444.
    • (2006) J. Anim. Ecol. , vol.43 , pp. 433-444
    • Segurado, P.1
  • 24
    • 0031696340 scopus 로고    scopus 로고
    • Local spatial autocorrelation in biological variables
    • Sokal, R. R. et al. 1998. Local spatial autocorrelation in biological variables. - Biol. J. Linn. Soc. 65: 41-62.
    • (1998) Biol. J. Linn. Soc. , vol.65 , pp. 41-62
    • Sokal, R.R.1
  • 25
    • 60349118527 scopus 로고    scopus 로고
    • Richness patterns, species distribution and the principle of extreme deconstruction
    • Terribile, L. C. et al. 2009. Richness patterns, species distribution and the principle of extreme deconstruction. - Global Ecol. Biogeogr. 18: 123-136.
    • (2009) Global Ecol. Biogeogr. , vol.18 , pp. 123-136
    • Terribile, L.C.1
  • 26
    • 0001793787 scopus 로고
    • We need both exploratory and confirmatory
    • Tukey, J. W. 1980. We need both exploratory and confirmatory. -Am. Stat. 34: 23-25.
    • (1980) Am. Stat. , vol.34 , pp. 23-25
    • Tukey, J.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.