-
2
-
-
77953392773
-
-
In these algorithms, k is the number of centers to be obtained by alternatively assigning data points to candidate centers (expectation step) and then taking the mean of each newly defined cluster as new candidate centers (optimization step).
-
In these algorithms, k is the number of centers to be obtained by alternatively assigning data points to candidate centers (expectation step) and then taking the mean of each newly defined cluster as new candidate centers (optimization step).
-
-
-
-
7
-
-
33847172327
-
-
10.1126/science.1136800
-
B. Frey and D. Dueck, Science 315, 972 (2007). 10.1126/science.1136800
-
(2007)
Science
, vol.315
, pp. 972
-
-
Frey, B.1
Dueck, D.2
-
10
-
-
0032269108
-
-
10.1093/comjnl/41.8.578
-
C. Fraley and A. Raftery, Comput. J. 41, 578 (1998). 10.1093/comjnl/41.8. 578
-
(1998)
Comput. J.
, vol.41
, pp. 578
-
-
Fraley, C.1
Raftery, A.2
-
11
-
-
10044254422
-
-
10.1162/0899766042321751
-
S. Still and W. Bialek, Neural Comput. 16, 2483 (2004). 10.1162/0899766042321751
-
(2004)
Neural Comput.
, vol.16
, pp. 2483
-
-
Still, S.1
Bialek, W.2
-
13
-
-
38049121041
-
-
K. Wang, J. Zhang, D. Li, X. Zhang, and T. Guo, Acta Automatica Sin. 33, 1242 (2007).
-
(2007)
Acta Automatica Sin.
, vol.33
, pp. 1242
-
-
Wang, K.1
Zhang, J.2
Li, D.3
Zhang, X.4
Guo, T.5
-
14
-
-
56049108623
-
-
ECML/PKDD, Antwerp
-
X. Zhang, C. Furtlehner, and M. Sebag, Data Streaming with Affinity Propagation (ECML/PKDD, Antwerp, 2008), pp. 628-643.
-
(2008)
Data Streaming with Affinity Propagation
, pp. 628-643
-
-
Zhang, X.1
Furtlehner, C.2
Sebag, M.3
-
15
-
-
77953422618
-
-
KDD, Paris
-
X. Zhang, C. Furtlehner, J. Perez, C. Germain-Renaud, and M. Sebag, Toward Autonomic Grids: Analyzing the Job Flow with Affinity Streaming (KDD, Paris, 2009), pp. 628-643.
-
(2009)
Toward Autonomic Grids: Analyzing the Job Flow with Affinity Streaming
, pp. 628-643
-
-
Zhang, X.1
Furtlehner, C.2
Perez, J.3
Germain-Renaud, C.4
Sebag, M.5
-
16
-
-
0041630826
-
-
10.1143/JPSJ.72.1645
-
Y. Kabashima, J. Phys. Soc. Jpn. 72, 1645 (2003). 10.1143/JPSJ.72.1645
-
(2003)
J. Phys. Soc. Jpn.
, vol.72
, pp. 1645
-
-
Kabashima, Y.1
-
17
-
-
77953374686
-
-
Except if the similarity matrix is sparse, in which case the complexity reduces to Nklog (N) with k the average connectivity of the similarity matrix.
-
Except if the similarity matrix is sparse, in which case the complexity reduces to N k log (N) with k the average connectivity of the similarity matrix.
-
-
-
-
18
-
-
0038633423
-
-
10.1109/TKDE.2003.1198387
-
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan, IEEE Transaction on Knowledge and Data Engineering 15, 515-528 (2003). 10.1109/TKDE.2003.1198387
-
(2003)
IEEE Transaction on Knowledge and Data Engineering
, vol.15
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'Callaghan, L.5
-
20
-
-
77953451515
-
-
/d ω in 5.4.
-
/ d ω in 5.4.
-
-
-
-
21
-
-
33644783522
-
-
in MIT Press, Cambridge, MA
-
Lihi Zelnik-manor and Pietro Perona, in Advances in Neural Information Processing Systems 17 (MIT Press, Cambridge, MA, 2004), pp. 1601-1608.
-
(2004)
Advances in Neural Information Processing Systems 17
, pp. 1601-1608
-
-
Zelnik-Manor, L.1
Perona, P.2
-
23
-
-
77953468851
-
-
Fluctuations are neglected in this argument. In practice the exemplars which emerge from the coalescence of two clusters might originate from both clusters, when considering different subsets, if the number of data is not sufficiently large.
-
Fluctuations are neglected in this argument. In practice the exemplars which emerge from the coalescence of two clusters might originate from both clusters, when considering different subsets, if the number of data is not sufficiently large.
-
-
-
|