메뉴 건너뛰기




Volumn 16, Issue 12, 2004, Pages 2483-2506

How many clusters? An information-theoretic perspective

Author keywords

[No Author keywords available]

Indexed keywords


EID: 10044254422     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766042321751     Document Type: Review
Times cited : (111)

References (21)
  • 1
    • 0000810448 scopus 로고    scopus 로고
    • Statistical inference, Occam's razor, and statistical mechanics on the space of probability distributions
    • Balasubramanian, V. (1997). Statistical inference, Occam's razor, and statistical mechanics on the space of probability distributions. Neural Computation, 9, 349-368.
    • (1997) Neural Computation , vol.9 , pp. 349-368
    • Balasubramanian, V.1
  • 2
    • 0000521616 scopus 로고    scopus 로고
    • Superparamagnetic clustering of data
    • Blatt, M., Wiseman S., & Domany, E. (1996). Superparamagnetic clustering of data. Phys. Rev. Lett., 76, 3251-3254.
    • (1996) Phys. Rev. Lett. , vol.76 , pp. 3251-3254
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 3
    • 0002757023 scopus 로고    scopus 로고
    • Probability models and hypotheses testing in partitioning cluster analysis
    • P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Singapore: World Scientific
    • Bock, H.-H. (1996). Probability models and hypotheses testing in partitioning cluster analysis. In P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering and classification (pp. 378-453). Singapore: World Scientific.
    • (1996) Clustering and Classification , pp. 378-453
    • Bock, H.-H.1
  • 4
    • 0009054890 scopus 로고    scopus 로고
    • Model selection in clustering by uniform convergence bounds
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Cambridge, MA: MIT Press
    • Buhmann, J. M., & Held, M. (2000). Model selection in clustering by uniform convergence bounds. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Buhmann, J.M.1    Held, M.2
  • 6
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., & Raftery, A. (2002). Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc., 97, 611.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611
    • Fraley, C.1    Raftery, A.2
  • 7
    • 0004241258 scopus 로고    scopus 로고
    • London: Chapman and Hall/CRC Press
    • Gordon, A. D. (1999). Classification. London: Chapman and Hall/CRC Press.
    • (1999) Classification
    • Gordon, A.D.1
  • 8
    • 0000666757 scopus 로고
    • On stochastic complexity and nonparametric density estimation
    • Hall, P., & Hannan, E. J. (1988). On stochastic complexity and nonparametric density estimation. Biometrika, 75, 705-714.
    • (1988) Biometrika , vol.75 , pp. 705-714
    • Hall, P.1    Hannan, E.J.2
  • 9
    • 0037033417 scopus 로고    scopus 로고
    • Algorithm for data clustering in pattern recognition problems based on quantum mechanics
    • Horn D., & Gottlieb, A. (2002). Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett., 88, 018702.
    • (2002) Phys. Rev. Lett. , vol.88 , pp. 018702
    • Horn, D.1    Gottlieb, A.2
  • 11
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • L. M. L. Cam & J. Neyman (Eds.), Berkeley: University of California Press
    • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In L. M. L. Cam & J. Neyman (Eds.), Proc. 5th Berkeley Symp. Math. Statistics and Probability (Vol. 1, pp. 281-297). Berkeley: University of California Press.
    • (1967) Proc. 5th Berkeley Symp. Math. Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 12
    • 0000389568 scopus 로고
    • Statistical mechanics and phase transitions in clustering
    • Rose, K., Gurewitz, E., & Fox, G. C. (1990). Statistical mechanics and phase transitions in clustering. Phys. Rev. Lett., 65, 945.
    • (1990) Phys. Rev. Lett. , vol.65 , pp. 945
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 13
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • Roth, V., Lange, T., Braun M. L., & Buhmann, J. M. (2004). Stability-based validation of clustering solutions. Neural Computation, 16, 1299-1323.
    • (2004) Neural Computation , vol.16 , pp. 1299-1323
    • Roth, V.1    Lange, T.2    Braun, M.L.3    Buhmann, J.M.4
  • 14
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech. J., 27, 379-423, 623-656.
    • (1948) Bell System Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 15
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • Smyth, P. (2000). Model selection for probabilistic clustering using cross-validated likelihood. Statistics and Computing, 10, 63.
    • (2000) Statistics and Computing , vol.10 , pp. 63
    • Smyth, P.1
  • 16
    • 84898998530 scopus 로고    scopus 로고
    • Geometric clustering using the information bottleneck method
    • S. Thrun, L. Saul, & B. Schölkopf (Eds.), Cambridge, MA: MIT Press
    • Still, S., Bialek W., & Bottou, L. (2004). Geometric clustering using the information bottleneck method. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, 16. Cambridge, MA: MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Still, S.1    Bialek, W.2    Bottou, L.3
  • 17
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc., 36, 111.
    • (1974) J. R. Stat. Soc. , vol.36 , pp. 111
    • Stone, M.1
  • 18
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the Gap statistic
    • Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a dataset via the Gap statistic. J. R. Stat. Soc. B, 63, 411.
    • (2001) J. R. Stat. Soc. B , vol.63 , pp. 411
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 19
    • 0001808038 scopus 로고    scopus 로고
    • The information bottleneck method
    • B. Hajek & R. S. Sreenivas (Eds.), Urbana: University of Illinois
    • Tishby, N., Pereira, F., & Bialek, W. (1999). The information bottleneck method. In B. Hajek & R. S. Sreenivas (Eds.), Proc. 37th Annual Allerton Conf. Urbana: University of Illinois.
    • (1999) Proc. 37th Annual Allerton Conf.
    • Tishby, N.1    Pereira, F.2    Bialek, W.3
  • 20
    • 0001065513 scopus 로고
    • The upward bias in measures of information derived from limited data samples
    • Treves, A., & Panzeri, S. (1995). The upward bias in measures of information derived from limited data samples. Neural Computation, 7, 399.
    • (1995) Neural Computation , vol.7 , pp. 399
    • Treves, A.1    Panzeri, S.2
  • 21
    • 84944178665 scopus 로고
    • Hierarchical groupings to optimize an objective function
    • Ward, J. H. (1963). Hierarchical groupings to optimize an objective function. J. Am. Stat. Assoc., 58, 236.
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236
    • Ward, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.