메뉴 건너뛰기




Volumn , Issue , 2009, Pages 69-75

Mining from large image sets

Author keywords

Computer vision; Image collection mining; Landmark recognition; Large scale processing; Learning from continuous data streams; Vision for mobile phones; Webcam summarization

Indexed keywords

CONTINUOUS DATA; IMAGE COLLECTION MINING; IMAGE COLLECTIONS; LANDMARK RECOGNITION; LARGE-SCALE PROCESSING; WEBCAM SUMMARIZATION;

EID: 74049116105     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1646396.1646410     Document Type: Conference Paper
Times cited : (11)

References (30)
  • 1
    • 74049099894 scopus 로고    scopus 로고
    • Time Square Webcam. http://images.earthcam.com/ec-metros/ourcams/ mpstudiosouth.jpg, 2008/04/01 - 2008/05/20.
    • Time Square Webcam. http://images.earthcam.com/ec-metros/ourcams/ mpstudiosouth.jpg, 2008/04/01 - 2008/05/20.
  • 2
    • 39549091484 scopus 로고    scopus 로고
    • Robust real-time unusual event detection using multiple fixed-location monitors
    • A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Robust real-time unusual event detection using multiple fixed-location monitors. Trans. PAMI, 30(3):555-560, 2008.
    • (2008) Trans. PAMI , vol.30 , Issue.3 , pp. 555-560
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3    Reinitz, D.4
  • 3
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In SIGMOD, 1993.
    • (1993) SIGMOD
    • Agrawal, R.1    Imielinski, T.2    Swami, A.N.3
  • 5
    • 84993777525 scopus 로고    scopus 로고
    • Hunting nessie - real-time abnormality detection from webcams
    • Technical report, Computer Vision Laboratory, ETH Zürich
    • M. Breitenstein, H. Grabner, and L. V. Gool. Hunting nessie - real-time abnormality detection from webcams. Technical report, Computer Vision Laboratory, ETH Zürich, 2009.
    • (2009)
    • Breitenstein, M.1    Grabner, H.2    Gool, L.V.3
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 7
    • 85090137388 scopus 로고    scopus 로고
    • I know what you did last summer: Object level auto-annotation of holiday snaps
    • S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. I know what you did last summer: object level auto-annotation of holiday snaps. In ICCV, 2009.
    • (2009) ICCV
    • Gammeter, S.1    Bossard, L.2    Quack, T.3    Van Gool, L.4
  • 8
    • 50649091752 scopus 로고    scopus 로고
    • M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. Multi-view stereo for community photo collections. In ICCV, pages 265-270, Rio de Janeiro, Brazil, 2007. IEEE.
    • M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz. Multi-view stereo for community photo collections. In ICCV, pages 265-270, Rio de Janeiro, Brazil, 2007. IEEE.
  • 9
    • 0033556908 scopus 로고    scopus 로고
    • An on-line agglomerative clustering method for nonstationary data
    • I. D. Guedalia, M. London, and M. Werman. An on-line agglomerative clustering method for nonstationary data. Neural Computation, 11(2):521-540, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 521-540
    • Guedalia, I.D.1    London, M.2    Werman, M.3
  • 10
    • 33746576905 scopus 로고    scopus 로고
    • A system for learning statistical motion patterns
    • W. Hu, X. Xiao, Z. Fu, D. Xie, F.-T. Tan, and S. Maybank. A system for learning statistical motion patterns. Trans. PAMI, 28(9):1450-1464, 2006.
    • (2006) Trans. PAMI , vol.28 , Issue.9 , pp. 1450-1464
    • Hu, W.1    Xiao, X.2    Fu, Z.3    Xie, D.4    Tan, F.-T.5    Maybank, S.6
  • 11
    • 34948882282 scopus 로고    scopus 로고
    • Consistent temporal variations in many outdoor scenes
    • N. Jacobs, N. Roman, and R. Pless. Consistent temporal variations in many outdoor scenes. In CVPR, 2007.
    • (2007) CVPR
    • Jacobs, N.1    Roman, N.2    Pless, R.3
  • 12
    • 0030216085 scopus 로고    scopus 로고
    • Learning the distribution of object trajectories for event recognition
    • N. Johnson and D. Hogg. Learning the distribution of object trajectories for event recognition. In BMVC, 1996.
    • (1996) BMVC
    • Johnson, N.1    Hogg, D.2
  • 13
    • 67349195046 scopus 로고    scopus 로고
    • What does the sky tell us about the camera?
    • J. Lalonde, S. Narasimhan, and A. Efros. What does the sky tell us about the camera? In ECCV, 2008.
    • (2008) ECCV
    • Lalonde, J.1    Narasimhan, S.2    Efros, A.3
  • 14
    • 74049163010 scopus 로고    scopus 로고
    • Scene segmentation for behaviour correlation
    • J. Li, S. Gong, and T. Xiang. Scene segmentation for behaviour correlation. In ECCV, 2008.
    • (2008) ECCV
    • Li, J.1    Gong, S.2    Xiang, T.3
  • 15
    • 20444410793 scopus 로고    scopus 로고
    • Learning semantic scene models from observing activity in visual surveillance
    • Man, and Cybernetics
    • D. Makris and T. Ellis. Learning semantic scene models from observing activity in visual surveillance. Trans. on Systems, Man, and Cybernetics, 35(3):397-408, 2005.
    • (2005) Trans. on Systems , vol.35 , Issue.3 , pp. 397-408
    • Makris, D.1    Ellis, T.2
  • 16
    • 0034245149 scopus 로고    scopus 로고
    • A bayesian computer vision system for modeling human interactions
    • N. Oliver, B. Rosario, and A. Pentland. A bayesian computer vision system for modeling human interactions. Trans. PAMI, 22(8):831-843, 2000.
    • (2000) Trans. PAMI , vol.22 , Issue.8 , pp. 831-843
    • Oliver, N.1    Rosario, B.2    Pentland, A.3
  • 17
    • 50649086537 scopus 로고    scopus 로고
    • High-dimensional feature matching: Employing the concept of meaningful nearest neighbors
    • D. Omercevic, O. Drbohlav, and A. Leonardis. High-dimensional feature matching: Employing the concept of meaningful nearest neighbors. In ICCV, 2007.
    • (2007) ICCV
    • Omercevic, D.1    Drbohlav, O.2    Leonardis, A.3
  • 18
    • 70450179951 scopus 로고    scopus 로고
    • Efficient representation of local geometry for large scale object retrieval
    • M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry for large scale object retrieval. In CVPR, 2009.
    • (2009) CVPR
    • Perdoch, M.1    Chum, O.2    Matas, J.3
  • 19
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
    • (2007) CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 21
    • 70449566291 scopus 로고    scopus 로고
    • World-scale mining of objects and events from community photo collections
    • T. Quack, B. Leibe, and L. Van Gool. World-scale mining of objects and events from community photo collections. In CIVR, 2008.
    • (2008) CIVR
    • Quack, T.1    Leibe, B.2    Van Gool, L.3
  • 22
    • 70450202706 scopus 로고    scopus 로고
    • Who are you?
    • Learning person specific classifiers from video
    • J. Sivic, M. Everingham, and A. Zisserman. "Who are you?" - Learning person specific classifiers from video. In CVPR, 2009.
    • (2009) CVPR
    • Sivic, J.1    Everingham, M.2    Zisserman, A.3
  • 23
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video google: a text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 24
    • 77954006739 scopus 로고    scopus 로고
    • Photo tourism: Exploring photo collections in 3d
    • N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3d. In SIGGRAPH, 2006.
    • (2006) SIGGRAPH
    • Snavely, N.1    Seitz, S.M.2    Szeliski, R.3
  • 25
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time tracking. Trans. PAMI, 22(8):747-757, 2000.
    • (2000) Trans. PAMI , vol.22 , Issue.8 , pp. 747-757
    • Stauffer, C.1    Grimson, W.E.L.2
  • 27
    • 33750561124 scopus 로고    scopus 로고
    • Web-based 3d reconstruction service
    • M. Vergauwen and L. Van Gool. Web-based 3d reconstruction service. MVA, 17(6):411-426, 2006.
    • (2006) MVA , vol.17 , Issue.6 , pp. 411-426
    • Vergauwen, M.1    Van Gool, L.2
  • 28
    • 51949084186 scopus 로고    scopus 로고
    • Trajectory analysis and semantic region modeling using a nonparametric bayesian model
    • X. Wang, K. Ma, G. Ng, and W. Grimson. Trajectory analysis and semantic region modeling using a nonparametric bayesian model. In CVPR, 2008.
    • (2008) CVPR
    • Wang, X.1    Ma, K.2    Ng, G.3    Grimson, W.4
  • 29
    • 0034844255 scopus 로고    scopus 로고
    • Deriving intrinsic images from image sequences
    • Y. Weiss. Deriving intrinsic images from image sequences. In ICCV, 2001.
    • (2001) ICCV
    • Weiss, Y.1
  • 30
    • 5044228350 scopus 로고    scopus 로고
    • Detecting unusual activity in video
    • H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video. In CVPR, 2004.
    • (2004) CVPR
    • Zhong, H.1    Shi, J.2    Visontai, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.